File size: 5,071 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import cv2
import numpy as np
import torch
import torch.nn.functional as F


def crop_mask(masks, boxes):
    """

    "Crop" predicted masks by zeroing out everything not in the predicted bbox.

    Vectorized by Chong (thanks Chong).



    Args:

        - masks should be a size [h, w, n] tensor of masks

        - boxes should be a size [n, 4] tensor of bbox coords in relative point form

    """

    n, h, w = masks.shape
    x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1)  # x1 shape(1,1,n)
    r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :]  # rows shape(1,w,1)
    c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None]  # cols shape(h,1,1)

    return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))


def process_mask_upsample(protos, masks_in, bboxes, shape):
    """

    Crop after upsample.

    proto_out: [mask_dim, mask_h, mask_w]

    out_masks: [n, mask_dim], n is number of masks after nms

    bboxes: [n, 4], n is number of masks after nms

    shape:input_image_size, (h, w)



    return: h, w, n

    """

    c, mh, mw = protos.shape  # CHW
    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
    masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
    masks = crop_mask(masks, bboxes)  # CHW
    return masks.gt_(0.5)


def process_mask(protos, masks_in, bboxes, shape, upsample=False):
    """

    Crop before upsample.

    proto_out: [mask_dim, mask_h, mask_w]

    out_masks: [n, mask_dim], n is number of masks after nms

    bboxes: [n, 4], n is number of masks after nms

    shape:input_image_size, (h, w)



    return: h, w, n

    """

    c, mh, mw = protos.shape  # CHW
    ih, iw = shape
    masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)  # CHW

    downsampled_bboxes = bboxes.clone()
    downsampled_bboxes[:, 0] *= mw / iw
    downsampled_bboxes[:, 2] *= mw / iw
    downsampled_bboxes[:, 3] *= mh / ih
    downsampled_bboxes[:, 1] *= mh / ih

    masks = crop_mask(masks, downsampled_bboxes)  # CHW
    if upsample:
        masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0]  # CHW
    return masks.gt_(0.5)


def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
    """

    img1_shape: model input shape, [h, w]

    img0_shape: origin pic shape, [h, w, 3]

    masks: [h, w, num]

    """
    # Rescale coordinates (xyxy) from im1_shape to im0_shape
    if ratio_pad is None:  # calculate from im0_shape
        gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1])  # gain  = old / new
        pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2  # wh padding
    else:
        pad = ratio_pad[1]
    top, left = int(pad[1]), int(pad[0])  # y, x
    bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])

    if len(masks.shape) < 2:
        raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
    masks = masks[top:bottom, left:right]
    # masks = masks.permute(2, 0, 1).contiguous()
    # masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
    # masks = masks.permute(1, 2, 0).contiguous()
    masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))

    if len(masks.shape) == 2:
        masks = masks[:, :, None]
    return masks


def mask_iou(mask1, mask2, eps=1e-7):
    """

    mask1: [N, n] m1 means number of predicted objects

    mask2: [M, n] m2 means number of gt objects

    Note: n means image_w x image_h



    return: masks iou, [N, M]

    """
    intersection = torch.matmul(mask1, mask2.t()).clamp(0)
    union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection  # (area1 + area2) - intersection
    return intersection / (union + eps)


def masks_iou(mask1, mask2, eps=1e-7):
    """

    mask1: [N, n] m1 means number of predicted objects

    mask2: [N, n] m2 means number of gt objects

    Note: n means image_w x image_h



    return: masks iou, (N, )

    """
    intersection = (mask1 * mask2).sum(1).clamp(0)  # (N, )
    union = (mask1.sum(1) + mask2.sum(1))[None] - intersection  # (area1 + area2) - intersection
    return intersection / (union + eps)


def masks2segments(masks, strategy='largest'):
    # Convert masks(n,160,160) into segments(n,xy)
    segments = []
    for x in masks.int().cpu().numpy().astype('uint8'):
        c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
        if c:
            if strategy == 'concat':  # concatenate all segments
                c = np.concatenate([x.reshape(-1, 2) for x in c])
            elif strategy == 'largest':  # select largest segment
                c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
        else:
            c = np.zeros((0, 2))  # no segments found
        segments.append(c.astype('float32'))
    return segments