File size: 35,627 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
import os

import torch
import torch.nn as nn
import torch.nn.functional as F

from torchvision.ops import sigmoid_focal_loss

from utils.general import xywh2xyxy, xyxy2xywh
from utils.metrics import bbox_iou
from utils.segment.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
from utils.segment.tal.assigner import TaskAlignedAssigner
from utils.torch_utils import de_parallel
from utils.segment.general import crop_mask


def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    # return positive, negative label smoothing BCE targets
    return 1.0 - 0.5 * eps, 0.5 * eps


class VarifocalLoss(nn.Module):
    # Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
    def __init__(self):
        super().__init__()

    def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
        weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
        with torch.cuda.amp.autocast(enabled=False):
            loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
                                                       reduction="none") * weight).sum()
        return loss


class FocalLoss(nn.Module):
    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super().__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = "none"  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = torch.sigmoid(pred)  # prob from logits
        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = (1.0 - p_t) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == "mean":
            return loss.mean()
        elif self.reduction == "sum":
            return loss.sum()
        else:  # 'none'
            return loss


class BboxLoss(nn.Module):
    def __init__(self, reg_max, use_dfl=False):
        super().__init__()
        self.reg_max = reg_max
        self.use_dfl = use_dfl

    def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
        # iou loss
        bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4])  # (b, h*w, 4)
        pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
        target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
        bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
        
        iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
        loss_iou = 1.0 - iou

        loss_iou *= bbox_weight
        loss_iou = loss_iou.sum() / target_scores_sum

        # dfl loss
        if self.use_dfl:
            dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
            pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
            target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
            target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
            loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
            loss_dfl = loss_dfl.sum() / target_scores_sum
        else:
            loss_dfl = torch.tensor(0.0).to(pred_dist.device)

        return loss_iou, loss_dfl, iou

    def _df_loss(self, pred_dist, target):
        target_left = target.to(torch.long)
        target_right = target_left + 1
        weight_left = target_right.to(torch.float) - target
        weight_right = 1 - weight_left
        loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
            target_left.shape) * weight_left
        loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
                                     reduction="none").view(target_left.shape) * weight_right
        return (loss_left + loss_right).mean(-1, keepdim=True)


class ComputeLoss:
    # Compute losses
    def __init__(self, model, use_dfl=True, overlap=True):
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0))  # positive, negative BCE targets

        # Focal loss
        g = h["fl_gamma"]  # focal loss gamma
        if g > 0:
            BCEcls = FocalLoss(BCEcls, g)

        m = de_parallel(model).model[-1]  # Detect() module
        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
        self.BCEcls = BCEcls
        self.hyp = h
        self.stride = m.stride  # model strides
        self.nc = m.nc  # number of classes
        self.nl = m.nl  # number of layers
        self.no = m.no
        self.nm = m.nm
        self.overlap = overlap
        self.reg_max = m.reg_max
        self.device = device

        self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
                                            num_classes=self.nc,
                                            alpha=float(os.getenv('YOLOA', 0.5)),
                                            beta=float(os.getenv('YOLOB', 6.0)))
        self.assigner2 = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
                                            num_classes=self.nc,
                                            alpha=float(os.getenv('YOLOA', 0.5)),
                                            beta=float(os.getenv('YOLOB', 6.0)))
        self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
        self.bbox_loss2 = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
        self.proj = torch.arange(m.reg_max).float().to(device)  # / 120.0
        self.use_dfl = use_dfl

    def preprocess(self, targets, batch_size, scale_tensor):
        if targets.shape[0] == 0:
            out = torch.zeros(batch_size, 0, 5, device=self.device)
        else:
            i = targets[:, 0]  # image index
            _, counts = i.unique(return_counts=True)
            out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
            for j in range(batch_size):
                matches = i == j
                n = matches.sum()
                if n:
                    out[j, :n] = targets[matches, 1:]
            out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
        return out

    def bbox_decode(self, anchor_points, pred_dist):
        if self.use_dfl:
            b, a, c = pred_dist.shape  # batch, anchors, channels
            pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
        return dist2bbox(pred_dist, anchor_points, xywh=False)

    def __call__(self, p, targets, masks, img=None, epoch=0):
        loss = torch.zeros(4, device=self.device)  # box, cls, dfl
        
        feats_, pred_masks_, proto_ = p if len(p) == 3 else p[1]
        
        feats, pred_masks, proto = feats_[0], pred_masks_[0], proto_[0]
        feats2, pred_masks2, proto2 = feats_[1], pred_masks_[1], proto_[1]
        
        batch_size, _, mask_h, mask_w = proto.shape
        
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1)
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_masks = pred_masks.permute(0, 2, 1).contiguous()
        
        pred_distri2, pred_scores2 = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats2], 2).split(
            (self.reg_max * 4, self.nc), 1)
        pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
        pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
        pred_masks2 = pred_masks2.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        batch_size, grid_size = pred_scores.shape[:2]
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        try:
            batch_idx = targets[:, 0].view(-1, 1)
            targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
            gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
            mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
        except RuntimeError as e:
            raise TypeError('ERROR.') from e


        # pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)
        
        pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2)  # xyxy, (b, h*w, 4)

        target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
            pred_scores.detach().sigmoid(),
            (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt)

        target_labels2, target_bboxes2, target_scores2, fg_mask2, target_gt_idx2 = self.assigner2(
            pred_scores2.detach().sigmoid(),
            (pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt)

        target_scores_sum = target_scores.sum()

        target_scores_sum2 = target_scores2.sum()

        # cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[2] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE
        loss[2] *= 0.25
        loss[2] += self.BCEcls(pred_scores2, target_scores2.to(dtype)).sum() / target_scores_sum2  # BCE

        # bbox loss
        if fg_mask.sum():
            loss[0], loss[3], _ = self.bbox_loss(pred_distri, 
                                                  pred_bboxes, 
                                                  anchor_points, 
                                                  target_bboxes / stride_tensor,
                                                  target_scores, 
                                                  target_scores_sum, 
                                                  fg_mask)
            
            # masks loss
            if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
                
            for i in range(batch_size):
                if fg_mask[i].sum():
                    mask_idx = target_gt_idx[i][fg_mask[i]]
                    if self.overlap:
                        gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
                    else:
                        gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
                    xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
                    marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
                    mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
                    loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
                                                     marea)  # seg loss
                    
            loss[0] *= 0.25
            loss[3] *= 0.25
            loss[1] *= 0.25

        # bbox loss
        if fg_mask2.sum():
            loss0_, loss3_, _ = self.bbox_loss2(pred_distri2, 
                                                  pred_bboxes2, 
                                                  anchor_points, 
                                                  target_bboxes2 / stride_tensor,
                                                  target_scores2, 
                                                  target_scores_sum2, 
                                                  fg_mask2)
            
            # masks loss
            if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
                
            for i in range(batch_size):
                if fg_mask2[i].sum():
                    mask_idx = target_gt_idx2[i][fg_mask2[i]]
                    if self.overlap:
                        gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
                    else:
                        gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
                    xyxyn = target_bboxes2[i][fg_mask2[i]] / imgsz[[1, 0, 1, 0]]
                    marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
                    mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
                    loss[1] += self.single_mask_loss(gt_mask, pred_masks2[i][fg_mask2[i]], proto2[i], mxyxy,
                                                     marea)  # seg loss
                    
            loss[0] += loss0_
            loss[3] += loss3_

        loss[0] *= 7.5  # box gain
        loss[1] *= 2.5 / batch_size
        loss[2] *= 0.5  # cls gain
        loss[3] *= 1.5  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
        # Mask loss for one image
        pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:])  # (n, 32) @ (32,80,80) -> (n,80,80)
        loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
        #loss = sigmoid_focal_loss(pred_mask, gt_mask, alpha = .25, gamma = 2., reduction = 'none')
        
        #p_m = torch.flatten(pred_mask.softmax(dim = 1))
        #g_m = torch.flatten(gt_mask)
        #i_m = torch.sum(torch.mul(p_m, g_m))
        #u_m = torch.sum(torch.add(p_m, g_m))
        #dice_coef = (2. * i_m + 1.) / (u_m + 1.)
        #dice_loss = (1. - dice_coef)
        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()


class ComputeLossLH:
    # Compute losses
    def __init__(self, model, use_dfl=True, overlap=True):
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0))  # positive, negative BCE targets

        # Focal loss
        g = h["fl_gamma"]  # focal loss gamma
        if g > 0:
            BCEcls = FocalLoss(BCEcls, g)

        m = de_parallel(model).model[-1]  # Detect() module
        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
        self.BCEcls = BCEcls
        self.hyp = h
        self.stride = m.stride  # model strides
        self.nc = m.nc  # number of classes
        self.nl = m.nl  # number of layers
        self.no = m.no
        self.nm = m.nm
        self.overlap = overlap
        self.reg_max = m.reg_max
        self.device = device

        self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
                                            num_classes=self.nc,
                                            alpha=float(os.getenv('YOLOA', 0.5)),
                                            beta=float(os.getenv('YOLOB', 6.0)))
        self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
        self.proj = torch.arange(m.reg_max).float().to(device)  # / 120.0
        self.use_dfl = use_dfl

    def preprocess(self, targets, batch_size, scale_tensor):
        if targets.shape[0] == 0:
            out = torch.zeros(batch_size, 0, 5, device=self.device)
        else:
            i = targets[:, 0]  # image index
            _, counts = i.unique(return_counts=True)
            out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
            for j in range(batch_size):
                matches = i == j
                n = matches.sum()
                if n:
                    out[j, :n] = targets[matches, 1:]
            out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
        return out

    def bbox_decode(self, anchor_points, pred_dist):
        if self.use_dfl:
            b, a, c = pred_dist.shape  # batch, anchors, channels
            pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
        return dist2bbox(pred_dist, anchor_points, xywh=False)

    def __call__(self, p, targets, masks, img=None, epoch=0):
        loss = torch.zeros(4, device=self.device)  # box, cls, dfl
        
        feats_, pred_masks_, proto_ = p if len(p) == 3 else p[1]
        
        feats, pred_masks, proto = feats_[0], pred_masks_[0], proto_[0]
        feats2, pred_masks2, proto2 = feats_[1], pred_masks_[1], proto_[1]
        
        batch_size, _, mask_h, mask_w = proto.shape
        
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1)
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_masks = pred_masks.permute(0, 2, 1).contiguous()
        
        pred_distri2, pred_scores2 = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats2], 2).split(
            (self.reg_max * 4, self.nc), 1)
        pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
        pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
        pred_masks2 = pred_masks2.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        batch_size, grid_size = pred_scores.shape[:2]
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        try:
            batch_idx = targets[:, 0].view(-1, 1)
            targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
            gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
            mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
        except RuntimeError as e:
            raise TypeError('ERROR.') from e


        # pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)
        
        pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2)  # xyxy, (b, h*w, 4)

        target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
            pred_scores2.detach().sigmoid(),
            (pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt)

        target_scores_sum = target_scores.sum()

        # cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[2] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE
        loss[2] *= 0.25
        loss[2] += self.BCEcls(pred_scores2, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # bbox loss
        if fg_mask.sum():
            loss[0], loss[3], _ = self.bbox_loss(pred_distri, 
                                                  pred_bboxes, 
                                                  anchor_points, 
                                                  target_bboxes / stride_tensor,
                                                  target_scores, 
                                                  target_scores_sum, 
                                                  fg_mask)
            
            # masks loss
            if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
                
            for i in range(batch_size):
                if fg_mask[i].sum():
                    mask_idx = target_gt_idx[i][fg_mask[i]]
                    if self.overlap:
                        gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
                    else:
                        gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
                    xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
                    marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
                    mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
                    loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
                                                     marea)  # seg loss
                    
            loss[0] *= 0.25
            loss[3] *= 0.25
            loss[1] *= 0.25

        # bbox loss
        if fg_mask.sum():
            loss0_, loss3_, _ = self.bbox_loss(pred_distri2, 
                                                  pred_bboxes2, 
                                                  anchor_points, 
                                                  target_bboxes / stride_tensor,
                                                  target_scores, 
                                                  target_scores_sum, 
                                                  fg_mask)
            
            # masks loss
            if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
                
            for i in range(batch_size):
                if fg_mask[i].sum():
                    mask_idx = target_gt_idx[i][fg_mask[i]]
                    if self.overlap:
                        gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
                    else:
                        gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
                    xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
                    marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
                    mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
                    loss[1] += self.single_mask_loss(gt_mask, pred_masks2[i][fg_mask[i]], proto2[i], mxyxy,
                                                     marea)  # seg loss
                    
            loss[0] += loss0_
            loss[3] += loss3_

        loss[0] *= 7.5  # box gain
        loss[1] *= 2.5 / batch_size
        loss[2] *= 0.5  # cls gain
        loss[3] *= 1.5  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
        # Mask loss for one image
        pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:])  # (n, 32) @ (32,80,80) -> (n,80,80)
        loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
        #loss = sigmoid_focal_loss(pred_mask, gt_mask, alpha = .25, gamma = 2., reduction = 'none')
        
        #p_m = torch.flatten(pred_mask.softmax(dim = 1))
        #g_m = torch.flatten(gt_mask)
        #i_m = torch.sum(torch.mul(p_m, g_m))
        #u_m = torch.sum(torch.add(p_m, g_m))
        #dice_coef = (2. * i_m + 1.) / (u_m + 1.)
        #dice_loss = (1. - dice_coef)
        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()


class ComputeLossLH0:
    # Compute losses
    def __init__(self, model, use_dfl=True, overlap=True):
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0))  # positive, negative BCE targets

        # Focal loss
        g = h["fl_gamma"]  # focal loss gamma
        if g > 0:
            BCEcls = FocalLoss(BCEcls, g)

        m = de_parallel(model).model[-1]  # Detect() module
        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
        self.BCEcls = BCEcls
        self.hyp = h
        self.stride = m.stride  # model strides
        self.nc = m.nc  # number of classes
        self.nl = m.nl  # number of layers
        self.no = m.no
        self.nm = m.nm
        self.overlap = overlap
        self.reg_max = m.reg_max
        self.device = device

        self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
                                            num_classes=self.nc,
                                            alpha=float(os.getenv('YOLOA', 0.5)),
                                            beta=float(os.getenv('YOLOB', 6.0)))
        self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
        self.proj = torch.arange(m.reg_max).float().to(device)  # / 120.0
        self.use_dfl = use_dfl

    def preprocess(self, targets, batch_size, scale_tensor):
        if targets.shape[0] == 0:
            out = torch.zeros(batch_size, 0, 5, device=self.device)
        else:
            i = targets[:, 0]  # image index
            _, counts = i.unique(return_counts=True)
            out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
            for j in range(batch_size):
                matches = i == j
                n = matches.sum()
                if n:
                    out[j, :n] = targets[matches, 1:]
            out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
        return out

    def bbox_decode(self, anchor_points, pred_dist):
        if self.use_dfl:
            b, a, c = pred_dist.shape  # batch, anchors, channels
            pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
        return dist2bbox(pred_dist, anchor_points, xywh=False)

    def __call__(self, p, targets, masks, img=None, epoch=0):
        loss = torch.zeros(4, device=self.device)  # box, cls, dfl
        
        feats_, pred_masks_, proto_ = p if len(p) == 3 else p[1]
        
        feats, pred_masks, proto = feats_[0], pred_masks_[0], proto_[0]
        feats2, pred_masks2, proto2 = feats_[1], pred_masks_[1], proto_[1]
        
        batch_size, _, mask_h, mask_w = proto.shape
        
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1)
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_masks = pred_masks.permute(0, 2, 1).contiguous()
        
        pred_distri2, pred_scores2 = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats2], 2).split(
            (self.reg_max * 4, self.nc), 1)
        pred_scores2 = pred_scores2.permute(0, 2, 1).contiguous()
        pred_distri2 = pred_distri2.permute(0, 2, 1).contiguous()
        pred_masks2 = pred_masks2.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        batch_size, grid_size = pred_scores.shape[:2]
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        try:
            batch_idx = targets[:, 0].view(-1, 1)
            targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
            gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
            mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
        except RuntimeError as e:
            raise TypeError('ERROR.') from e


        # pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)
        
        pred_bboxes2 = self.bbox_decode(anchor_points, pred_distri2)  # xyxy, (b, h*w, 4)

        target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
            pred_scores2.detach().sigmoid(),
            (pred_bboxes2.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor,
            gt_labels,
            gt_bboxes,
            mask_gt)

        target_scores_sum = target_scores.sum()

        # cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[2] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE
        loss[2] *= 0.25
        loss[2] += self.BCEcls(pred_scores2, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # bbox loss
        if fg_mask.sum():
            loss[0], loss[3], _ = self.bbox_loss(pred_distri, 
                                                  pred_bboxes, 
                                                  anchor_points, 
                                                  target_bboxes / stride_tensor,
                                                  target_scores, 
                                                  target_scores_sum, 
                                                  fg_mask)
            
            # masks loss
            if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
                
            for i in range(batch_size):
                if fg_mask[i].sum():
                    mask_idx = target_gt_idx[i][fg_mask[i]]
                    if self.overlap:
                        gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
                    else:
                        gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
                    xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
                    marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
                    mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
                    loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
                                                     marea)  # seg loss
                    
            loss[0] *= 0.25
            loss[3] *= 0.25
            loss[1] *= 0.25

        # bbox loss
        if fg_mask.sum():
            loss0_, loss3_, _ = self.bbox_loss(pred_distri2, 
                                                  pred_bboxes2, 
                                                  anchor_points, 
                                                  target_bboxes / stride_tensor,
                                                  target_scores, 
                                                  target_scores_sum, 
                                                  fg_mask)
            
            # masks loss
            if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
                
            for i in range(batch_size):
                if fg_mask[i].sum():
                    mask_idx = target_gt_idx[i][fg_mask[i]]
                    if self.overlap:
                        gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
                    else:
                        gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
                    xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
                    marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
                    mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
                    loss[1] += 0. * self.single_mask_loss(gt_mask, pred_masks2[i][fg_mask[i]], proto2[i], mxyxy,
                                                     marea)  # seg loss
                    
            loss[0] += loss0_
            loss[3] += loss3_

        loss[0] *= 7.5  # box gain
        loss[1] *= 2.5 / batch_size
        loss[2] *= 0.5  # cls gain
        loss[3] *= 1.5  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
        # Mask loss for one image
        pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:])  # (n, 32) @ (32,80,80) -> (n,80,80)
        loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
        #loss = sigmoid_focal_loss(pred_mask, gt_mask, alpha = .25, gamma = 2., reduction = 'none')
        
        #p_m = torch.flatten(pred_mask.softmax(dim = 1))
        #g_m = torch.flatten(gt_mask)
        #i_m = torch.sum(torch.mul(p_m, g_m))
        #u_m = torch.sum(torch.add(p_m, g_m))
        #dice_coef = (2. * i_m + 1.) / (u_m + 1.)
        #dice_loss = (1. - dice_coef)
        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()