Spaces:
Sleeping
Sleeping
import streamlit as st | |
import google.generativeai as genai | |
from dotenv import load_dotenv | |
import os | |
import PIL | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
load_dotenv() | |
os.getenv("langchain_google_genai") | |
os.environ['GOOGLE_API_KEY'] = 'AIzaSyA5cVv6I1HxH68CTiPGalPQHymtunvDxVY' | |
genai.configure(api_key="AIzaSyA5cVv6I1HxH68CTiPGalPQHymtunvDxVY") | |
# Function to extract text from PDF files | |
import os | |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
# Function to split text into chunks | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
# Function to create a vector store from text chunks | |
def get_vector_store(text_chunks): | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) | |
vector_store.save_local("faiss_index") | |
# Function to get the conversational chain | |
if "text_chunks" not in st.session_state: | |
st.session_state.text_chunks = None | |
if "vector_store" not in st.session_state: | |
st.session_state.vector_store = None | |
if "document_messages" not in st.session_state: | |
st.session_state.document_messages = [] | |
def get_conversational_chain(): | |
prompt_template = """ | |
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in | |
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n | |
Context:\n {context}?\n | |
Question: \n{question}\n | |
Answer: | |
""" | |
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.1) | |
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) | |
return chain | |
# Function to handle user input | |
# Function to handle user input | |
def user_input(user_question): | |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) | |
docs = new_db.similarity_search(user_question) | |
chain = get_conversational_chain() | |
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) | |
return response["output_text"] # Return the answer as a string | |
# Streamlit UI setup | |
st.markdown("<h1 style='text-align: center;'>Chào mừng tới Medical Question Answering 🎈</h1>", unsafe_allow_html=True) | |
with st.expander("Instructions"): | |
st.markdown("Truyền vào một câu hỏi liên quan đến y tế, chúng tôi sẽ giải đáp cho bạn.") | |
st.markdown("Bạn có thể hỏi các câu liên quan đến triệu chứng, nguyên nhân và một số phương pháp điều trị.") | |
with st.sidebar: | |
mode = st.selectbox("Chọn chức năng", ["Question with Images", "Question with Documents"]) | |
if mode == "Question with Images": | |
uploaded_files = st.file_uploader("Choose medical images...", type=["jpg", "jpeg", "png", "dicom"], accept_multiple_files=True) | |
elif mode == "Question with Documents": | |
folder_path = "medicalDocuments" | |
if st.session_state.text_chunks is None: | |
pdf_docs = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith(".pdf")] | |
raw_text = get_pdf_text(pdf_docs) | |
st.session_state.text_chunks = get_text_chunks(raw_text) | |
st.session_state.vector_store = get_vector_store(st.session_state.text_chunks) | |
# Initialize session state | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "image_messages" not in st.session_state: | |
st.session_state.image_messages = [] | |
if "max_messages" not in st.session_state: | |
st.session_state.max_messages = 1000 | |
# Handle "Question with Images" mode | |
col_1, col_2, col_3 = st.columns([8, 1, 8]) | |
if mode == "Question with Images" and uploaded_files: | |
with col_1: | |
image = PIL.Image.open(uploaded_files[0]) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
with col_3: | |
# Display past messages for Question with Images | |
for message in st.session_state.image_messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
if prompt := st.chat_input("Ask a question about the image..."): | |
st.session_state.image_messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
model = genai.GenerativeModel('gemini-1.5-flash') | |
with st.chat_message("assistant"): | |
try: | |
response = model.generate_content([prompt, image]) | |
st.session_state.image_messages.append({"role": "assistant", "content": response.text}) | |
st.markdown(response.text) | |
except Exception as e: | |
st.session_state.max_messages = len(st.session_state.image_messages) | |
st.session_state.image_messages.append( | |
{"role": "assistant", "content": f"Oops! There was an error: {str(e)}"} | |
) | |
st.rerun() | |
if "document_messages" not in st.session_state: | |
st.session_state.document_messages = [] | |
# Handle "Question with Documents" mode | |
if mode == "Question with Documents": | |
# Display past messages for Document-based conversation | |
for message in st.session_state.document_messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
if user_question := st.chat_input("Hỏi câu hỏi từ file PDF"): | |
st.session_state.document_messages.append({"role": "user", "content": user_question}) | |
with st.chat_message("user"): | |
st.markdown(user_question) | |
# Generate the response | |
with st.chat_message("assistant"): | |
try: | |
response = user_input(user_question) | |
st.session_state.document_messages.append({"role": "assistant", "content": response}) | |
st.markdown(response) | |
except Exception as e: | |
st.session_state.document_messages.append( | |
{"role": "assistant", "content": f"Oops! There was an error: {str(e)}"} | |
) | |
st.rerun() | |
# Display past messages for non-image-based conversation | |
if mode != "Question with Images" and mode != "Question with Documents": | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
if len(st.session_state.messages) < st.session_state.max_messages: | |
if prompt := st.chat_input("Hôm nay bạn như thế nào?"): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
model = genai.GenerativeModel(model_name="gemini-pro") | |
with st.chat_message("assistant"): | |
try: | |
prompt_parts = [prompt] | |
response = model.generate_content(prompt_parts) | |
st.session_state.messages.append({"role": "assistant", "content": response.text}) | |
st.markdown(response.text) | |
except Exception as e: | |
st.session_state.max_messages = len(st.session_state.messages) | |
st.session_state.messages.append( | |
{"role": "assistant", "content": f"Oops! There was an error: {str(e)}"} | |
) | |
st.rerun() | |