from dataclasses import dataclass from typing import Optional import torch import torch.nn as nn from einops import rearrange from ..tsr_utils import BaseModule class TriplaneUpsampleNetwork(BaseModule): @dataclass class Config(BaseModule.Config): in_channels: int out_channels: int cfg: Config def configure(self) -> None: self.upsample = nn.ConvTranspose2d( self.cfg.in_channels, self.cfg.out_channels, kernel_size=2, stride=2 ) def forward(self, triplanes: torch.Tensor) -> torch.Tensor: triplanes_up = rearrange( self.upsample( rearrange(triplanes, "B Np Ci Hp Wp -> (B Np) Ci Hp Wp", Np=3) ), "(B Np) Co Hp Wp -> B Np Co Hp Wp", Np=3, ) return triplanes_up class NeRFMLP(BaseModule): @dataclass class Config(BaseModule.Config): in_channels: int n_neurons: int n_hidden_layers: int activation: str = "relu" bias: bool = True weight_init: Optional[str] = "kaiming_uniform" bias_init: Optional[str] = None cfg: Config def configure(self) -> None: layers = [ self.make_linear( self.cfg.in_channels, self.cfg.n_neurons, bias=self.cfg.bias, weight_init=self.cfg.weight_init, bias_init=self.cfg.bias_init, ), self.make_activation(self.cfg.activation), ] for i in range(self.cfg.n_hidden_layers - 1): layers += [ self.make_linear( self.cfg.n_neurons, self.cfg.n_neurons, bias=self.cfg.bias, weight_init=self.cfg.weight_init, bias_init=self.cfg.bias_init, ), self.make_activation(self.cfg.activation), ] layers += [ self.make_linear( self.cfg.n_neurons, 4, # density 1 + features 3 bias=self.cfg.bias, weight_init=self.cfg.weight_init, bias_init=self.cfg.bias_init, ) ] self.layers = nn.Sequential(*layers) def make_linear( self, dim_in, dim_out, bias=True, weight_init=None, bias_init=None, ): layer = nn.Linear(dim_in, dim_out, bias=bias) if weight_init is None: pass elif weight_init == "kaiming_uniform": torch.nn.init.kaiming_uniform_(layer.weight, nonlinearity="relu") else: raise NotImplementedError if bias: if bias_init is None: pass elif bias_init == "zero": torch.nn.init.zeros_(layer.bias) else: raise NotImplementedError return layer def make_activation(self, activation): if activation == "relu": return nn.ReLU(inplace=True) elif activation == "silu": return nn.SiLU(inplace=True) else: raise NotImplementedError def forward(self, x): inp_shape = x.shape[:-1] x = x.reshape(-1, x.shape[-1]) features = self.layers(x) features = features.reshape(*inp_shape, -1) out = {"density": features[..., 0:1], "features": features[..., 1:4]} return out