Truong-Phuc Nguyen
commited on
Update!
Browse files
app.py
CHANGED
@@ -8,18 +8,26 @@ def load_essential_models(scaler_6_path, scaler_8_path, scaler_full_path, clf_6_
|
|
8 |
scaler_8 = pickle.load(open(file=scaler_8_path, mode='rb'))
|
9 |
scaler_21 = pickle.load(open(file=scaler_full_path, mode='rb'))
|
10 |
clf_6 = pickle.load(open(file=clf_6_path, mode='rb'))
|
11 |
-
clf_8 = load_model(clf_8_path)
|
12 |
-
clf_21 = load_model(clf_full_path)
|
13 |
return scaler_6, scaler_8, scaler_21, clf_6, clf_8, clf_21
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
st.title('Demo System for Vietnamese Woman Bra Size Classifier')
|
18 |
|
19 |
header_col_1, header_col_2 = st.columns([3, 2])
|
20 |
num_of_features = header_col_1.selectbox(label='Please select the number of measurements you have:', options=['6 measurements', '8 measurements', '21 measurements'])
|
21 |
|
22 |
-
h, w, bmi, vtn, vn, vcn, cn, cnnp, cnnt, cntp, cntt, ccnp, ccnt, snt, sndp, sndt, xup, xut, cl, ttp, ttt = [0.0]*21
|
23 |
|
24 |
if num_of_features == '6 measurements':
|
25 |
sample_options_6 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
|
@@ -50,32 +58,32 @@ elif num_of_features == '8 measurements':
|
|
50 |
sample_options_8 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
|
51 |
container_col_1, container_col_2, container_col_3, container_col_4 = st.columns([1, 1, 1, 1])
|
52 |
if sample_options_8 == 'Sample 1 (Small)':
|
53 |
-
ttp = container_col_1.number_input(label='Your ttp:', value=
|
54 |
-
cl = container_col_2.number_input(label='Your cl:', value=
|
55 |
-
cnnp = container_col_3.number_input(label='Your cnnp:', value=
|
56 |
-
vn = container_col_4.number_input(label='Your vn:', value=
|
57 |
-
vtn = container_col_1.number_input(label='Your vtn: ', value=
|
58 |
-
|
59 |
-
cntp = container_col_3.number_input(label='Your cntp:', value=8.
|
60 |
-
vcn = container_col_4.number_input(label='Your vcn:', value=
|
61 |
elif sample_options_8 == 'Sample 2 (Medium)':
|
62 |
-
ttp = container_col_1.number_input(label='Your ttp:', value=
|
63 |
-
cl = container_col_2.number_input(label='Your cl:', value=13.60, min_value=0.00, step=0.01)
|
64 |
-
cnnp = container_col_3.number_input(label='Your cnnp:', value=8.80, min_value=0.00, step=0.01)
|
65 |
-
vn = container_col_4.number_input(label='Your vn:', value=83.20, min_value=0.00, step=0.01)
|
66 |
-
vtn = container_col_1.number_input(label='Your vtn: ', value=82.50, min_value=0.00, step=0.01)
|
67 |
-
ccnt = container_col_2.number_input(label='Your ccnt:', value=9.30, min_value=0.00, step=0.01)
|
68 |
-
cntp = container_col_3.number_input(label='Your cntp:', value=9.10, min_value=0.00, step=0.01)
|
69 |
-
vcn = container_col_4.number_input(label='Your vcn:', value=69.60, min_value=0.00, step=0.01)
|
70 |
-
else:
|
71 |
-
ttp = container_col_1.number_input(label='Your ttp:', value=453.30, min_value=0.00, step=0.01)
|
72 |
cl = container_col_2.number_input(label='Your cl:', value=13.00, min_value=0.00, step=0.01)
|
73 |
-
cnnp = container_col_3.number_input(label='Your cnnp:', value=12.
|
74 |
-
vn = container_col_4.number_input(label='Your vn:', value=
|
75 |
-
vtn = container_col_1.number_input(label='Your vtn: ', value=
|
76 |
-
|
77 |
-
cntp = container_col_3.number_input(label='Your cntp:', value=
|
78 |
-
vcn = container_col_4.number_input(label='Your vcn:', value=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
else:
|
80 |
sample_options_21 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
|
81 |
container_col_1, container_col_2, container_col_3, container_col_4, container_col_5 = st.columns([1, 1, 1, 1, 1])
|
@@ -153,17 +161,17 @@ with col_3:
|
|
153 |
|
154 |
if predict:
|
155 |
if num_of_features == '6 measurements':
|
156 |
-
X_6 = [[vtn, vn, vcn, cl, ttp, ttt]]
|
157 |
X_6 = scaler_6.transform(X_6)
|
158 |
y_6 = clf_6.predict(X_6)
|
159 |
-
st.success(f'We recommend you choosing {y_6} size!')
|
160 |
elif num_of_features == '8 measurements':
|
161 |
-
X_8 = [[ttp, cl, cnnp, vn, vtn, cnnt, cntp, vcn]]
|
162 |
X_8 = scaler_8.transform(X_8)
|
163 |
y_8 = clf_8.predict(X_8)
|
164 |
-
st.success(f'We recommend you choosing {np.argmax(y_8, axis=1)} size!')
|
165 |
else:
|
166 |
-
X_21 = [[h, w, bmi, vtn, vn, vcn, cn, cnnp, cnnt, cntp, cntt, ccnp, ccnt, snt, sndp, sndt, xup, xut, cl, ttp, ttt]]
|
167 |
X_21 = scaler_21.transform(X_21)
|
168 |
y_21 = clf_21.predict(X_21)
|
169 |
-
st.success(f'We recommend you choosing {np.argmax(y_21, axis=1)} size!')
|
|
|
8 |
scaler_8 = pickle.load(open(file=scaler_8_path, mode='rb'))
|
9 |
scaler_21 = pickle.load(open(file=scaler_full_path, mode='rb'))
|
10 |
clf_6 = pickle.load(open(file=clf_6_path, mode='rb'))
|
11 |
+
clf_8 = load_model(clf_8_path, compile=False)
|
12 |
+
clf_21 = load_model(clf_full_path, compile=False)
|
13 |
return scaler_6, scaler_8, scaler_21, clf_6, clf_8, clf_21
|
14 |
|
15 |
+
def convert_prediction(prediction):
|
16 |
+
if prediction == [0]:
|
17 |
+
return 'S'
|
18 |
+
elif prediction == [1]:
|
19 |
+
return 'M'
|
20 |
+
else:
|
21 |
+
return 'L'
|
22 |
+
|
23 |
+
scaler_6, scaler_8, scaler_21, clf_6, clf_8, clf_21 = load_essential_models(scaler_6_path='./Models/6/scaler.pkl', scaler_8_path='./Models/8/scaler.pkl', scaler_full_path='./Models/21/scaler.pkl', clf_6_path='./Models/6/svc_fs_tune.pkl', clf_8_path='./Models/8/ANN_8.h5', clf_full_path='./Models/21/ANNs_full.h5')
|
24 |
|
25 |
st.title('Demo System for Vietnamese Woman Bra Size Classifier')
|
26 |
|
27 |
header_col_1, header_col_2 = st.columns([3, 2])
|
28 |
num_of_features = header_col_1.selectbox(label='Please select the number of measurements you have:', options=['6 measurements', '8 measurements', '21 measurements'])
|
29 |
|
30 |
+
# h, w, bmi, vtn, vn, vcn, cn, cnnp, cnnt, cntp, cntt, ccnp, ccnt, snt, sndp, sndt, xup, xut, cl, ttp, ttt = [0.0]*21
|
31 |
|
32 |
if num_of_features == '6 measurements':
|
33 |
sample_options_6 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
|
|
|
58 |
sample_options_8 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
|
59 |
container_col_1, container_col_2, container_col_3, container_col_4 = st.columns([1, 1, 1, 1])
|
60 |
if sample_options_8 == 'Sample 1 (Small)':
|
61 |
+
ttp = container_col_1.number_input(label='Your ttp:', value=287.50, min_value=0.00, step=0.01)
|
62 |
+
cl = container_col_2.number_input(label='Your cl:', value=7.00, min_value=0.00, step=0.01)
|
63 |
+
cnnp = container_col_3.number_input(label='Your cnnp:', value=8.50, min_value=0.00, step=0.01)
|
64 |
+
vn = container_col_4.number_input(label='Your vn:', value=74.50, min_value=0.00, step=0.01)
|
65 |
+
vtn = container_col_1.number_input(label='Your vtn: ', value=74.00, min_value=0.00, step=0.01)
|
66 |
+
cnnt = container_col_2.number_input(label='Your cnnt:', value=8.90, min_value=0.00, step=0.01)
|
67 |
+
cntp = container_col_3.number_input(label='Your cntp:', value=8.50, min_value=0.00, step=0.01)
|
68 |
+
vcn = container_col_4.number_input(label='Your vcn:', value=67.50, min_value=0.00, step=0.01)
|
69 |
elif sample_options_8 == 'Sample 2 (Medium)':
|
70 |
+
ttp = container_col_1.number_input(label='Your ttp:', value=489.60, min_value=0.00, step=0.01)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
cl = container_col_2.number_input(label='Your cl:', value=13.00, min_value=0.00, step=0.01)
|
72 |
+
cnnp = container_col_3.number_input(label='Your cnnp:', value=12.40, min_value=0.00, step=0.01)
|
73 |
+
vn = container_col_4.number_input(label='Your vn:', value=78.30, min_value=0.00, step=0.01)
|
74 |
+
vtn = container_col_1.number_input(label='Your vtn: ', value=77.20, min_value=0.00, step=0.01)
|
75 |
+
cnnt = container_col_2.number_input(label='Your cnnt:', value=11.60, min_value=0.00, step=0.01)
|
76 |
+
cntp = container_col_3.number_input(label='Your cntp:', value=8.70, min_value=0.00, step=0.01)
|
77 |
+
vcn = container_col_4.number_input(label='Your vcn:', value=65.30, min_value=0.00, step=0.01)
|
78 |
+
else:
|
79 |
+
ttp = container_col_1.number_input(label='Your ttp:', value=568.2, min_value=0.00, step=0.01)
|
80 |
+
cl = container_col_2.number_input(label='Your cl:', value=13.7, min_value=0.00, step=0.01)
|
81 |
+
cnnp = container_col_3.number_input(label='Your cnnp:', value=14.0, min_value=0.00, step=0.01)
|
82 |
+
vn = container_col_4.number_input(label='Your vn:', value=88.7, min_value=0.00, step=0.01)
|
83 |
+
vtn = container_col_1.number_input(label='Your vtn: ', value=86.5, min_value=0.00, step=0.01)
|
84 |
+
cnnt = container_col_2.number_input(label='Your cnnt:', value=12.5, min_value=0.00, step=0.01)
|
85 |
+
cntp = container_col_3.number_input(label='Your cntp:', value=10.7, min_value=0.00, step=0.01)
|
86 |
+
vcn = container_col_4.number_input(label='Your vcn:', value=75.0, min_value=0.00, step=0.01)
|
87 |
else:
|
88 |
sample_options_21 = header_col_2.selectbox(label='Sample options:', options=['Sample 1 (Small)', 'Sample 2 (Medium)', 'Sample 3 (Large)'])
|
89 |
container_col_1, container_col_2, container_col_3, container_col_4, container_col_5 = st.columns([1, 1, 1, 1, 1])
|
|
|
161 |
|
162 |
if predict:
|
163 |
if num_of_features == '6 measurements':
|
164 |
+
X_6 = np.array([[vtn, vn, vcn, cl, ttp, ttt]])
|
165 |
X_6 = scaler_6.transform(X_6)
|
166 |
y_6 = clf_6.predict(X_6)
|
167 |
+
st.success(f'We recommend you choosing {convert_prediction(y_6)} size!')
|
168 |
elif num_of_features == '8 measurements':
|
169 |
+
X_8 = np.array([[ttp, cl, cnnp, vn, vtn, cnnt, cntp, vcn]])
|
170 |
X_8 = scaler_8.transform(X_8)
|
171 |
y_8 = clf_8.predict(X_8)
|
172 |
+
st.success(f'We recommend you choosing {convert_prediction(np.argmax(y_8, axis=1))} size!')
|
173 |
else:
|
174 |
+
X_21 = np.array([[h, w, bmi, vtn, vn, vcn, cn, cnnp, cnnt, cntp, cntt, ccnp, ccnt, snt, sndp, sndt, xup, xut, cl, ttp, ttt]])
|
175 |
X_21 = scaler_21.transform(X_21)
|
176 |
y_21 = clf_21.predict(X_21)
|
177 |
+
st.success(f'We recommend you choosing {convert_prediction(np.argmax(y_21, axis=1))} size!')
|