import gradio as gr import markdown import requests example_dpo_datasets = [ "mlabonne/orpo-dpo-mix-40k", "argilla/ultrafeedback-binarized-preferences-cleaned", "argilla/Capybara-Preferences", ] general_examples = ["davanstrien/cosmochat", "HuggingFaceH4/no_robots"] datasets_examples = example_dpo_datasets + general_examples def create_chat_html(messages, dataset_id, offset, compare_mode=False, column=""): chat_html = "" for turn_number, i in enumerate(range(0, len(messages), 2), start=1): user_message = messages[i] system_message = messages[i + 1] if i + 1 < len(messages) else None user_role = user_message["role"] user_content = user_message["content"] user_content_html = markdown.markdown(user_content) user_content_length = len(user_content) user_html = ( '
' + '
' ) user_html += ( f"Turn {turn_number} - {user_role.capitalize()}:
" ) user_html += f"Length: {user_content_length} characters

" user_html += f"{user_content_html}" user_html += "
" chat_html += user_html if system_message: system_role = system_message["role"] system_content = system_message["content"] system_content_html = markdown.markdown(system_content) system_content_length = len(system_content) system_html = ( '
' + '
' ) system_html += f"{system_role.capitalize()}:
" system_html += ( f"Length: {system_content_length} characters

" ) system_html += f"{system_content_html}" system_html += "
" chat_html += system_html if compare_mode: chat_html = f'
{chat_html}
' style = """ """ dataset_url = f"https://huggingface.co/datasets/{dataset_id}/viewer/default/train?row={offset}" dataset_link = f"[View dataset row]({dataset_url})" return dataset_link, style + chat_html def fetch_data( dataset_id, chosen_column, rejected_column, current_offset, direction, compare_mode ): change = 1 if direction == "Next" else -1 new_offset = max(0, current_offset + change) base_url = f"https://datasets-server.huggingface.co/rows?dataset={dataset_id}&config=default&split=train&offset={new_offset}&length=1" response = requests.get(base_url) if response.status_code != 200: return "", "Failed to fetch data", new_offset data = response.json() if compare_mode: if chosen_column and rejected_column: chosen_messages = data["rows"][0]["row"].get(chosen_column, []) rejected_messages = data["rows"][0]["row"].get(rejected_column, []) chosen_link, chosen_html = create_chat_html( chosen_messages, dataset_id, new_offset, compare_mode=True, column="chosen", ) rejected_link, rejected_html = create_chat_html( rejected_messages, dataset_id, new_offset, compare_mode=True, column="rejected", ) chat_html = f'
{chosen_html}{rejected_html}
' else: return ( "", "Please provide both chosen and rejected columns for comparison", new_offset, ) else: if chosen_column: messages = data["rows"][0]["row"].get(chosen_column, []) else: for key, value in data["rows"][0]["row"].items(): if ( isinstance(value, list) and len(value) > 0 and isinstance(value[0], dict) and "role" in value[0] ): messages = value break else: return "", "No suitable chat column found", new_offset _, chat_html = create_chat_html(messages, dataset_id, new_offset) dataset_url = f"https://huggingface.co/datasets/{dataset_id}/viewer/default/train?row={new_offset}" dataset_link = f"[View dataset row]({dataset_url})" return dataset_link, chat_html, new_offset def update_column_names(compare_mode): return ("chosen", "rejected") if compare_mode else ("", "") with gr.Blocks() as demo: with gr.Row(): gr.HTML( "

📖 Chat Column Viewer 📖

" ) gr.HTML( "
✨ Explore ChatML formatted data via the datasets viewer API ✨
" ) gr.Markdown( "This app allows you to view chat data from a Hugging Face dataset via the datasets viewer API. ChatML formatted data consists of messages formatted as lists of dictionaries, where each dictionary represents a message with a 'role' (e.g., 'user' or 'assistant') and 'content'. This is a very basic demo built in less than 30 minutes but it hopefully gives you an idea of the kinds of things you can build with the datasets viewer. You can get started building your own apps by going to the datasets viewer documentation [here](https://huggingface.co/docs/datasets-server/index)." ) with gr.Row(): dataset_id = gr.Dropdown( datasets_examples, label="Dataset ID", allow_custom_value=True, ) chosen_column = gr.Textbox( label="Chosen Column", placeholder="Column containing chosen chat data", ) rejected_column = gr.Textbox( label="Rejected Column", placeholder="Column containing rejected chat data", ) compare_mode = gr.Checkbox(label="Compare chosen and rejected chats") current_offset = gr.State(value=0) with gr.Row(): back_button = gr.Button("Back") next_button = gr.Button("Next") dataset_link = gr.Markdown() output_html = gr.HTML() compare_mode.change( fn=update_column_names, inputs=compare_mode, outputs=[chosen_column, rejected_column], ) back_button.click( lambda data, chosen, rejected, offset, compare: fetch_data( data, chosen, rejected, offset, "Back", compare ), inputs=[ dataset_id, chosen_column, rejected_column, current_offset, compare_mode, ], outputs=[dataset_link, output_html, current_offset], ) next_button.click( lambda data, chosen, rejected, offset, compare: fetch_data( data, chosen, rejected, offset, "Next", compare ), inputs=[ dataset_id, chosen_column, rejected_column, current_offset, compare_mode, ], outputs=[dataset_link, output_html, current_offset], ) demo.launch(debug=True)