Spaces:
Runtime error
Runtime error
File size: 6,645 Bytes
bf43437 31ab17b bf43437 31ab17b bf43437 31ab17b d77c2f1 31ab17b bf43437 31ab17b bf43437 31ab17b e95b21b 31ab17b bf43437 31ab17b bf43437 31ab17b bf43437 d77c2f1 bf43437 31ab17b d77c2f1 bf43437 31ab17b bf43437 31ab17b bf43437 2f1f9eb bf43437 2f1f9eb bf43437 2f1f9eb bf43437 31ab17b bf43437 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import asyncio
import html
import os
from io import BytesIO
import aiohttp
import dotenv
import gradio as gr
import requests
import torch
from colpali_engine.models import ColQwen2, ColQwen2Processor
from PIL import Image
from qdrant_client import QdrantClient
dotenv.load_dotenv()
if torch.cuda.is_available():
device = "cuda:0"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
# Initialize ColPali model and processor
model_name = "vidore/colqwen2-v0.1"
colpali_model = ColQwen2.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map=device,
)
colpali_processor = ColQwen2Processor.from_pretrained(
model_name,
)
# Initialize Qdrant client
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
qdrant_client = QdrantClient(
url="https://davanstrien-qdrant-test.hf.space",
port=None,
api_key=QDRANT_API_KEY,
timeout=10,
)
collection_name = "song_sheets" # Replace with your actual collection name
def search_images_by_text(query_text, top_k=5):
# Process and encode the text query
with torch.no_grad():
batch_query = colpali_processor.process_queries([query_text]).to(
colpali_model.device
)
query_embedding = colpali_model(**batch_query)
# Convert the query embedding to a list of vectors
multivector_query = query_embedding[0].cpu().float().numpy().tolist()
# Search in Qdrant
search_result = qdrant_client.query_points(
collection_name=collection_name,
query=multivector_query,
limit=top_k,
timeout=800,
)
return search_result
def modify_iiif_url(url, size_percent):
# Modify the IIIF URL to use percentage scaling
parts = url.split("/")
size_index = -3
parts[size_index] = f"pct:{size_percent}"
return "/".join(parts)
async def fetch_image(session, url):
async with session.get(url) as response:
content = await response.read()
return Image.open(BytesIO(content)).convert("RGB")
async def fetch_all_images(urls):
async with aiohttp.ClientSession() as session:
tasks = [fetch_image(session, url) for url in urls]
return await asyncio.gather(*tasks)
async def search_and_display(query, top_k, size_percent):
results = search_images_by_text(query, top_k)
modified_urls = [
modify_iiif_url(result.payload["image_url"], size_percent)
for result in results.points
]
images = await fetch_all_images(modified_urls)
html_output = (
"<div style='display: flex; flex-wrap: wrap; justify-content: space-around;'>"
)
for i, (image, result) in enumerate(zip(images, results.points)):
image_url = modified_urls[i]
item_url = result.payload["item_url"]
score = result.score
html_output += f"""
<div style='margin: 10px; text-align: center; width: 300px;'>
<img src='{image_url}' style='max-width: 100%; height: auto;'>
<p>Score: {score:.2f}</p>
<a href='{item_url}' target='_blank'>View Item</a>
</div>
"""
html_output += "</div>"
return html_output
# Wrapper function for synchronous Gradio interface
def search_and_display_wrapper(query, top_k, size_percent):
return asyncio.run(search_and_display(query, top_k, size_percent))
with gr.Blocks() as demo:
gr.HTML(
"""
<h1 style='text-align: center; color: #2a4b7c;'>America Singing: Nineteenth-Century Song Sheets ColPali Search</h1>
<div style="display: flex; align-items: stretch; margin-bottom: 20px;">
<div style="flex: 2; padding-right: 20px;">
<p>This app allows you to search through the Library of Congress's <a href="https://www.loc.gov/collections/nineteenth-century-song-sheets/about-this-collection/" target="_blank">"America Singing: Nineteenth-Century Song Sheets"</a> collection using natural language queries. The collection contains 4,291 song sheets from the 19th century, offering a unique window into American history, culture, and music.</p>
<p>This search functionality is powered by <a href="https://huggingface.co/blog/manu/colpali" target="_blank">ColPali</a>, an efficient document retrieval system that uses Vision Language Models. ColPali allows for searching through documents (including images and complex layouts) without the need for traditional text extraction or OCR. It works by directly embedding page images and using a <a href="https://jina.ai/news/what-is-colbert-and-late-interaction-and-why-they-matter-in-search/" target="_blank">late interaction mechanism</a> to match queries with relevant document patches.</p>
<p>ColPali's approach:
<ul>
<li>Uses a Vision Language Model to encode document page images directly</li>
<li>Splits images into patches and creates contextualized patch embeddings</li>
<li>Employs a late interaction mechanism to efficiently match query tokens to document patches</li>
<li>Eliminates the need for complex OCR and document parsing pipelines</li>
<li>Captures both textual and visual information from documents</li>
</ul>
</p>
</div>
<div style="flex: 1; display: flex; flex-direction: column;">
<div style="flex-grow: 1; display: flex; flex-direction: column; justify-content: center;">
<img src="https://tile.loc.gov/image-services/iiif/service:rbc:amss:hc:00:00:3b:hc00003b:001a/full/pct:50/0/default.jpg" alt="Example Song Sheet" style="width: 100%; height: auto; max-height: 100%; object-fit: contain; border-radius: 8px; box-shadow: 0 4px 8px rgba(0,0,0,0.1);">
</div>
<p style="text-align: center; margin-top: 10px;"><em>Example of a song sheet from the collection</em></p>
</div>
</div>
"""
)
with gr.Row():
with gr.Column(scale=4):
search_box = gr.Textbox(
label="Search Query", placeholder="i.e. Irish migrant experience"
)
submit_button = gr.Button("Search", variant="primary")
num_results = gr.Slider(
minimum=1, maximum=20, step=1, label="Number of Results", value=5
)
results_html = gr.HTML(label="Search Results")
submit_button.click(
fn=lambda query, top_k: search_and_display_wrapper(query, top_k, 50),
inputs=[search_box, num_results],
outputs=results_html,
)
demo.launch()
|