davanstrien's picture
davanstrien HF staff
chore: Update requirements.txt with new dependencies
bf43437
raw
history blame
6.45 kB
import asyncio
import html
import os
from io import BytesIO
import aiohttp
import dotenv
import gradio as gr
import requests
import torch
from colpali_engine.models import ColQwen2, ColQwen2Processor
from PIL import Image
from qdrant_client import QdrantClient
dotenv.load_dotenv()
if torch.cuda.is_available():
device = "cuda:0"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
# Initialize ColPali model and processor
model_name = "vidore/colqwen2-v0.1"
colpali_model = ColQwen2.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map=device,
)
colpali_processor = ColQwen2Processor.from_pretrained(
model_name,
)
# Initialize Qdrant client
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
qdrant_client = QdrantClient(
url="https://davanstrien-qdrant-test.hf.space",
port=None,
api_key=QDRANT_API_KEY,
timeout=10,
)
collection_name = "song_sheets" # Replace with your actual collection name
def search_images_by_text(query_text, top_k=5):
# Process and encode the text query
with torch.no_grad():
batch_query = colpali_processor.process_queries([query_text]).to(
colpali_model.device
)
query_embedding = colpali_model(**batch_query)
# Convert the query embedding to a list of vectors
multivector_query = query_embedding[0].cpu().float().numpy().tolist()
# Search in Qdrant
search_result = qdrant_client.query_points(
collection_name=collection_name,
query=multivector_query,
limit=top_k,
timeout=800,
)
return search_result
def modify_iiif_url(url, size_percent):
# Modify the IIIF URL to use percentage scaling
parts = url.split("/")
size_index = -3
parts[size_index] = f"pct:{size_percent}"
return "/".join(parts)
async def fetch_image(session, url):
async with session.get(url) as response:
content = await response.read()
return Image.open(BytesIO(content)).convert("RGB")
async def fetch_all_images(urls):
async with aiohttp.ClientSession() as session:
tasks = [fetch_image(session, url) for url in urls]
return await asyncio.gather(*tasks)
async def search_and_display(query, top_k, size_percent):
results = search_images_by_text(query, top_k)
modified_urls = [
modify_iiif_url(result.payload["image_url"], size_percent)
for result in results.points
]
images = await fetch_all_images(modified_urls)
html_output = (
"<div style='display: flex; flex-wrap: wrap; justify-content: space-around;'>"
)
for i, (image, result) in enumerate(zip(images, results.points)):
image_url = modified_urls[i]
item_url = result.payload["item_url"]
score = result.score
html_output += f"""
<div style='margin: 10px; text-align: center; width: 300px;'>
<img src='{image_url}' style='max-width: 100%; height: auto;'>
<p>Score: {score:.2f}</p>
<a href='{item_url}' target='_blank'>View Item</a>
</div>
"""
html_output += "</div>"
return html_output
# Wrapper function for synchronous Gradio interface
def search_and_display_wrapper(query, top_k, size_percent):
return asyncio.run(search_and_display(query, top_k, size_percent))
with gr.Blocks() as demo:
gr.HTML(
"""
<h1 style='text-align: center; color: #2a4b7c;'>America Singing: Nineteenth-Century Song Sheets ColPali Search</h1>
<div style="display: flex; align-items: flex-start; margin-bottom: 20px;">
<div style="flex: 2; padding-right: 20px;">
<p>This app allows you to search through the Library of Congress's <a href="https://www.loc.gov/collections/nineteenth-century-song-sheets/about-this-collection/" target="_blank">"America Singing: Nineteenth-Century Song Sheets"</a> collection using natural language queries. The collection contains 4,291 song sheets from the 19th century, offering a unique window into American history, culture, and music.</p>
<p>This search functionality is powered by <a href="https://huggingface.co/blog/manu/colpali" target="_blank">ColPali</a>, an efficient document retrieval system that uses Vision Language Models. ColPali allows for searching through documents (including images and complex layouts) without the need for traditional text extraction or OCR. It works by directly embedding page images and using a <a href="https://jina.ai/news/what-is-colbert-and-late-interaction-and-why-they-matter-in-search/" target="_blank">late interaction mechanism</a> to match queries with relevant document patches.</p>
<p>ColPali's approach:
<ul>
<li>Uses a Vision Language Model to encode document page images directly</li>
<li>Splits images into patches and creates contextualized patch embeddings</li>
<li>Employs a late interaction mechanism to efficiently match query tokens to document patches</li>
<li>Eliminates the need for complex OCR and document parsing pipelines</li>
<li>Captures both textual and visual information from documents</li>
</ul>
</p>
</div>
<div style="flex: 1;">
<img src="https://tile.loc.gov/image-services/iiif/service:rbc:amss:hc:00:00:3b:hc00003b:001a/full/pct:50/0/default.jpg" alt="Example Song Sheet" style="width: 100%; height: auto; border-radius: 8px; box-shadow: 0 4px 8px rgba(0,0,0,0.1);">
<p style="text-align: center;"><em>Example of a song sheet from the collection</em></p>
</div>
</div>
"""
)
with gr.Row():
with gr.Column(scale=4):
search_box = gr.Textbox(
label="Search Query", placeholder="i.e. Irish migrant experience"
)
with gr.Column(scale=1):
submit_button = gr.Button("Search", variant="primary")
num_results = gr.Slider(
minimum=1, maximum=20, step=1, label="Number of Results", value=5
)
results_html = gr.HTML(label="Search Results")
submit_button.click(
fn=lambda query, top_k: search_and_display_wrapper(query, top_k, 100),
inputs=[search_box, num_results],
outputs=results_html,
)
demo.launch()