Spaces:
Runtime error
Runtime error
# Import general purpose libraries | |
import os, sys, re | |
import streamlit as st | |
import PIL | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
import uuid | |
from zipfile import ZipFile, ZIP_DEFLATED | |
from io import BytesIO | |
# Import util functions from deoldify | |
# NOTE: This must be the first call in order to work properly! | |
from deoldify import device | |
from deoldify.device_id import DeviceId | |
#choices: CPU, GPU0...GPU7 | |
device.set(device=DeviceId.CPU) | |
from deoldify.visualize import * | |
# Import util functions from app_utils | |
from app_utils import get_model_bin | |
####### INPUT PARAMS ########### | |
model_folder = 'models/' | |
max_img_size = 800 | |
################################ | |
def load_model(model_dir, option): | |
if option.lower() == 'artistic': | |
model_url = 'https://data.deepai.org/deoldify/ColorizeArtistic_gen.pth' | |
get_model_bin(model_url, os.path.join(model_dir, "ColorizeArtistic_gen.pth")) | |
colorizer = get_image_colorizer(artistic=True) | |
elif option.lower() == 'stable': | |
model_url = "https://www.dropbox.com/s/usf7uifrctqw9rl/ColorizeStable_gen.pth?dl=0" | |
get_model_bin(model_url, os.path.join(model_dir, "ColorizeStable_gen.pth")) | |
colorizer = get_image_colorizer(artistic=False) | |
return colorizer | |
def resize_img(input_img, max_size): | |
img = input_img.copy() | |
img_height, img_width = img.shape[0],img.shape[1] | |
if max(img_height, img_width) > max_size: | |
if img_height > img_width: | |
new_width = img_width*(max_size/img_height) | |
new_height = max_size | |
resized_img = cv2.resize(img,(int(new_width), int(new_height))) | |
return resized_img | |
elif img_height <= img_width: | |
new_width = img_height*(max_size/img_width) | |
new_height = max_size | |
resized_img = cv2.resize(img,(int(new_width), int(new_height))) | |
return resized_img | |
return img | |
def get_image_download_link(img, filename, button_text): | |
button_uuid = str(uuid.uuid4()).replace('-', '') | |
button_id = re.sub('\d+', '', button_uuid) | |
buffered = BytesIO() | |
img.save(buffered, format="JPEG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
return get_button_html_code(img_str, filename, 'txt', button_id, button_text) | |
def get_button_html_code(data_str, filename, filetype, button_id, button_txt='Download file'): | |
custom_css = f""" | |
<style> | |
#{button_id} {{ | |
background-color: rgb(255, 255, 255); | |
color: rgb(38, 39, 48); | |
padding: 0.25em 0.38em; | |
position: relative; | |
text-decoration: none; | |
border-radius: 4px; | |
border-width: 1px; | |
border-style: solid; | |
border-color: rgb(230, 234, 241); | |
border-image: initial; | |
}} | |
#{button_id}:hover {{ | |
border-color: rgb(246, 51, 102); | |
color: rgb(246, 51, 102); | |
}} | |
#{button_id}:active {{ | |
box-shadow: none; | |
background-color: rgb(246, 51, 102); | |
color: white; | |
}} | |
</style> """ | |
href = custom_css + f'<a href="data:file/{filetype};base64,{data_str}" id="{button_id}" download="{filename}">{button_txt}</a>' | |
return href | |
def display_single_image(uploaded_file, img_size=800): | |
print('Type: ', type(uploaded_file)) | |
st_title_message.markdown("**Processing your image, please wait** β") | |
img_name = uploaded_file.name | |
# Open the image | |
pil_img = PIL.Image.open(uploaded_file) | |
img_rgb = np.array(pil_img) | |
resized_img_rgb = resize_img(img_rgb, img_size) | |
resized_pil_img = PIL.Image.fromarray(resized_img_rgb) | |
# Send the image to the model | |
output_pil_img = colorizer.plot_transformed_pil_image(resized_pil_img, render_factor=35, compare=False) | |
# Plot images | |
st_input_img.image(resized_pil_img, 'Input image', use_column_width=True) | |
st_output_img.image(output_pil_img, 'Output image', use_column_width=True) | |
# Show download button | |
st_download_button.markdown(get_image_download_link(output_pil_img, img_name, 'Download Image'), unsafe_allow_html=True) | |
# Reset the message | |
st_title_message.markdown("**To begin, please upload an image** π") | |
def process_multiple_images(uploaded_files, img_size=800): | |
num_imgs = len(uploaded_files) | |
output_images_list = [] | |
img_names_list = [] | |
idx = 1 | |
for idx, uploaded_file in enumerate(uploaded_files, start=1): | |
st_title_message.markdown("**Processing image {}/{}. Please wait** β".format(idx, | |
num_imgs)) | |
img_name = uploaded_file.name | |
img_type = uploaded_file.type | |
# Open the image | |
pil_img = PIL.Image.open(uploaded_file) | |
img_rgb = np.array(pil_img) | |
resized_img_rgb = resize_img(img_rgb, img_size) | |
resized_pil_img = PIL.Image.fromarray(resized_img_rgb) | |
# Send the image to the model | |
output_pil_img = colorizer.plot_transformed_pil_image(resized_pil_img, render_factor=35, compare=False) | |
output_images_list.append(output_pil_img) | |
img_names_list.append(img_name.split('.')[0]) | |
# Zip output files | |
zip_path = 'processed_images.zip' | |
zip_buf = zip_multiple_images(output_images_list, img_names_list, zip_path) | |
st_download_button.download_button( | |
label='Download ZIP file', | |
data=zip_buf.read(), | |
file_name=zip_path, | |
mime="application/zip" | |
) | |
# Show message | |
st_title_message.markdown("**Images are ready for download** πΎ") | |
def zip_multiple_images(pil_images_list, img_names_list, dest_path): | |
# Create zip file on memory | |
zip_buf = BytesIO() | |
with ZipFile(zip_buf, 'w', ZIP_DEFLATED) as zipObj: | |
for pil_img, img_name in zip(pil_images_list, img_names_list): | |
with BytesIO() as output: | |
# Save image in memory | |
pil_img.save(output, format="PNG") | |
# Read data | |
contents = output.getvalue() | |
# Write it to zip file | |
zipObj.writestr(img_name+".png", contents) | |
zip_buf.seek(0) | |
return zip_buf | |
########################### | |
###### STREAMLIT CODE ##### | |
########################### | |
# General configuration | |
# st.set_page_config(layout="centered") | |
st.set_page_config(layout="wide") | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
st.markdown(''' | |
<style> | |
.uploadedFile {display: none} | |
<style>''', | |
unsafe_allow_html=True) | |
# Main window configuration | |
st.title("Black and white colorizer") | |
st.markdown("This app puts color into your black and white pictures") | |
st_title_message = st.empty() | |
st_file_uploader = st.empty() | |
st_input_img = st.empty() | |
st_output_img = st.empty() | |
st_download_button = st.empty() | |
st_title_message.markdown("**Model loading, please wait** β") | |
# # Sidebar | |
st_color_option = st.sidebar.selectbox('Select colorizer mode', | |
('Artistic', 'Stable')) | |
# st.sidebar.title('Model parameters') | |
# det_conf_thres = st.sidebar.slider("Detector confidence threshold", 0.1, 0.9, value=0.5, step=0.1) | |
# det_nms_thres = st.sidebar.slider("Non-maximum supression IoU", 0.1, 0.9, value=0.4, step=0.1) | |
# Load models | |
try: | |
print('before loading the model') | |
colorizer = load_model(model_folder, st_color_option) | |
print('after loading the model') | |
except Exception as e: | |
colorizer = None | |
print('Error while loading the model. Please refresh the page') | |
print(e) | |
st_title_message.markdown("**Error while loading the model. Please refresh the page**") | |
if colorizer is not None: | |
st_title_message.markdown("**To begin, please upload an image** π") | |
#Choose your own image | |
uploaded_files = st_file_uploader.file_uploader("Upload a black and white photo", | |
type=['png', 'jpg', 'jpeg'], | |
accept_multiple_files=True) | |
if len(uploaded_files) == 1: | |
display_single_image(uploaded_files[0], max_img_size) | |
elif len(uploaded_files) > 1: | |
process_multiple_images(uploaded_files, max_img_size) | |