|
|
|
import os |
|
import random |
|
from threading import Thread |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM |
|
from transformers import AutoTokenizer |
|
from transformers import TextIteratorStreamer |
|
|
|
from chat_interface_preference import ChatInterface |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192")) |
|
|
|
if torch.cuda.is_available(): |
|
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
@spaces.GPU |
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.06, |
|
top_p: float = 0.95, |
|
top_k: int = 40, |
|
repetition_penalty: float = 1.2, |
|
) -> Iterator[str]: |
|
system_message = random.choice(["concise", "explicit", "simple", "complex", "usefull", "helpfull"]) |
|
conversation = [{"role": "system", "content": f"Communicate {system_message}."}] |
|
for user, assistant in chat_history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
chat_interface = ChatInterface( |
|
fn=generate, |
|
prefence_technique="dpo", |
|
min_turns=1, |
|
max_turns=10, |
|
repo_id="llm-human-feedback-collector-chat-interface-dpo", |
|
chatbot=gr.Chatbot(height=450, label="Meta-Llama-3.1-8B-Instruct", show_share_button=True), |
|
cache_examples=False, |
|
additional_inputs=[ |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.05, |
|
maximum=1.2, |
|
step=0.05, |
|
value=0.7, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.2, |
|
), |
|
], |
|
examples=[ |
|
["""What word doesn't make sense in this row: "car, airplane, lama, bus"?"""], |
|
["Write a news article about the usage of Lama's by the CSI"], |
|
["What are great things cook when getting started with Asian cooking?"], |
|
["Who was Anthony Bourdain?"], |
|
], |
|
title="💪🏽🦾 Human Feedback Collector | Meta-Llama-3.1-8B-Instruct | (DPO) 🦾💪🏽", |
|
description="".join( |
|
[ |
|
"This is an adaptation of the [`gr.ChatInferface`](https://www.gradio.app/docs/gradio/chatinterface) which also uses the [`huggingface_hub.CommitScheduler`](https://huggingface.co/docs/huggingface_hub/main/en/package_reference/hf_api#huggingface_hub.CommitScheduler) to allow for human feedback collection. ", |
|
"Another cool tool for capturing Gradio interactions is the [`gr.HuggingFaceDatasetSaver`](https://www.gradio.app/guides/using-flagging#the-hugging-face-dataset-saver-callback). ", |
|
"This demo shows how you might capture human feedback directly from applications within Gradio. ", |
|
"The captured feedback can directly be used for fine-tuning LLMs within framework like [transformers](https://github.com/huggingface/transformers), [TRL](https://github.com/huggingface/trl) or [AutoTrain](https://huggingface.co/autotrain), ", |
|
"however, it might benefit from additional data curation with something like [Argilla](https://github.com/argilla-io/argilla/) for human feedback and/or [distilabel](https://github.com/argilla-io/distilabel/) for AI feedback. Argilla can even be [deployed for free on Hugging Face Spaces](https://argilla-io.github.io/argilla/latest/getting_started/huggingface-spaces/).", |
|
] |
|
), |
|
) |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
chat_interface.render() |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|