davidberenstein1957's picture
Update preference technique
7e8ce88
raw
history blame
5.4 kB
#!/usr/bin/env python
import os
import random
from threading import Thread # noqa
from typing import Iterator
import gradio as gr
import spaces
import torch # noqa
from transformers import AutoModelForCausalLM # noqa
from transformers import AutoTokenizer # noqa
from transformers import TextIteratorStreamer # noqa
from chat_interface_preference import ChatInterface
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
if torch.cuda.is_available():
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.06,
top_p: float = 0.95,
top_k: int = 40,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
system_message = random.choice(["concise", "explicit", "simple", "complex", "usefull", "helpfull"])
conversation = [{"role": "system", "content": f"Communicate {system_message}."}]
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = ChatInterface(
fn=generate,
prefence_technique="dpo",
min_turns=1,
max_turns=10,
repo_id="llm-human-feedback-collector-chat-interface-dpo",
chatbot=gr.Chatbot(height=450, label="Meta-Llama-3.1-8B-Instruct", show_share_button=True),
cache_examples=False,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.05,
maximum=1.2,
step=0.05,
value=0.7,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
examples=[
["""What word doesn't make sense in this row: "car, airplane, lama, bus"?"""],
["Write a news article about the usage of Lama's by the CSI"],
["What are great things cook when getting started with Asian cooking?"],
["Who was Anthony Bourdain?"],
],
title="💪🏽🦾 Human Feedback Collector | Meta-Llama-3.1-8B-Instruct | (DPO) 🦾💪🏽",
description="".join(
[
"This is an adaptation of the [`gr.ChatInferface`](https://www.gradio.app/docs/gradio/chatinterface) which also uses the [`huggingface_hub.CommitScheduler`](https://huggingface.co/docs/huggingface_hub/main/en/package_reference/hf_api#huggingface_hub.CommitScheduler) to allow for human feedback collection. ",
"Another cool tool for capturing Gradio interactions is the [`gr.HuggingFaceDatasetSaver`](https://www.gradio.app/guides/using-flagging#the-hugging-face-dataset-saver-callback). ",
"This demo shows how you might capture human feedback directly from applications within Gradio. ",
"The captured feedback can directly be used for fine-tuning LLMs within framework like [transformers](https://github.com/huggingface/transformers), [TRL](https://github.com/huggingface/trl) or [AutoTrain](https://huggingface.co/autotrain), ",
"however, it might benefit from additional data curation with something like [Argilla](https://github.com/argilla-io/argilla/) for human feedback and/or [distilabel](https://github.com/argilla-io/distilabel/) for AI feedback. Argilla can even be [deployed for free on Hugging Face Spaces](https://argilla-io.github.io/argilla/latest/getting_started/huggingface-spaces/).",
]
),
)
with gr.Blocks(css="style.css") as demo:
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()