from PIL import Image import spaces import gradio as gr MODEL_ID = "Qwen/Qwen2-VL-7B-Instruct" MODEL_FINETUNE_ID = "davidr99/qwen2.5-7b-instruct-blackjack" EXAMPLES = [ "examples/black_jack_screenshot_1737088587.png", "examples/black_jack_screenshot_1737088629.png", "examples/black_jack_screenshot_1737088648.png", "examples/Screenshot 2024-12-06 220410.png" ] from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, torch_dtype="auto").to('cuda') model.load_adapter(MODEL_FINETUNE_ID) processor = AutoProcessor.from_pretrained(MODEL_FINETUNE_ID) @spaces.GPU(duration=30) def blackjack_ai(image, question): instruction = question messages = [ {"role": "system", "content": [ {"type":"text", "text": "You are a blackjack player. Extract the image into json information."} ] }, {"role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": instruction} ]} ] print(messages) # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text with gr.Blocks() as demo: image = gr.Image(type="filepath") question = gr.Textbox(value = "extract json from this image.") submit = gr.Button("Submit") output = gr.TextArea() examples = gr.Examples(examples=EXAMPLES, inputs=[image]) submit.click(blackjack_ai, inputs=[image, question], outputs=[output]) demo.launch()