|
import gradio as gr |
|
import gemini_gradio |
|
import openai_gradio |
|
import anthropic_gradio |
|
import sambanova_gradio |
|
import xai_gradio |
|
import hyperbolic_gradio |
|
import perplexity_gradio |
|
import mistral_gradio |
|
import fireworks_gradio |
|
import cerebras_gradio |
|
import groq_gradio |
|
|
|
|
|
|
|
with gr.Blocks(fill_height=True) as demo: |
|
with gr.Tab("Meta Llama"): |
|
with gr.Row(): |
|
llama_model = gr.Dropdown( |
|
choices=[ |
|
'Meta-Llama-3.2-1B-Instruct', |
|
'Meta-Llama-3.2-3B-Instruct', |
|
'Llama-3.2-11B-Vision-Instruct', |
|
'Llama-3.2-90B-Vision-Instruct', |
|
'Meta-Llama-3.1-8B-Instruct', |
|
'Meta-Llama-3.1-70B-Instruct', |
|
'Meta-Llama-3.1-405B-Instruct' |
|
], |
|
value='Llama-3.2-90B-Vision-Instruct', |
|
label="Select Llama Model", |
|
interactive=True |
|
) |
|
|
|
llama_interface = gr.load( |
|
name=llama_model.value, |
|
src=sambanova_gradio.registry, |
|
multimodal=True, |
|
fill_height=True |
|
) |
|
|
|
def update_llama_model(new_model): |
|
return gr.load( |
|
name=new_model, |
|
src=sambanova_gradio.registry, |
|
multimodal=True, |
|
fill_height=True |
|
) |
|
|
|
llama_model.change( |
|
fn=update_llama_model, |
|
inputs=[llama_model], |
|
outputs=[llama_interface] |
|
) |
|
|
|
gr.Markdown("**Note:** You need to use a SambaNova API key from [SambaNova Cloud](https://cloud.sambanova.ai/).") |
|
with gr.Tab("Gemini"): |
|
with gr.Row(): |
|
gemini_model = gr.Dropdown( |
|
choices=[ |
|
'gemini-1.5-flash', |
|
'gemini-1.5-flash-8b', |
|
'gemini-1.5-pro', |
|
'gemini-exp-1114' |
|
], |
|
value='gemini-1.5-pro', |
|
label="Select Gemini Model", |
|
interactive=True |
|
) |
|
|
|
gemini_interface = gr.load( |
|
name=gemini_model.value, |
|
src=gemini_gradio.registry, |
|
fill_height=True |
|
) |
|
|
|
def update_gemini_model(new_model): |
|
return gr.load( |
|
name=new_model, |
|
src=gemini_gradio.registry, |
|
fill_height=True |
|
) |
|
|
|
gemini_model.change( |
|
fn=update_gemini_model, |
|
inputs=[gemini_model], |
|
outputs=[gemini_interface] |
|
) |
|
with gr.Tab("ChatGPT"): |
|
with gr.Row(): |
|
model_choice = gr.Dropdown( |
|
choices=[ |
|
'gpt-4o', |
|
'gpt-4o-2024-08-06', |
|
'gpt-4o-2024-05-13', |
|
'chatgpt-4o-latest', |
|
'gpt-4o-mini', |
|
'gpt-4o-mini-2024-07-18', |
|
'o1-preview', |
|
'o1-preview-2024-09-12', |
|
'o1-mini', |
|
'o1-mini-2024-09-12', |
|
'gpt-4-turbo', |
|
'gpt-4-turbo-2024-04-09', |
|
'gpt-4-turbo-preview', |
|
'gpt-4-0125-preview', |
|
'gpt-4-1106-preview', |
|
'gpt-4', |
|
'gpt-4-0613' |
|
], |
|
value='gpt-4o', |
|
label="Select Model", |
|
interactive=True |
|
) |
|
|
|
chatgpt_interface = gr.load( |
|
name=model_choice.value, |
|
src=openai_gradio.registry, |
|
accept_token=True, |
|
fill_height=True |
|
) |
|
|
|
def update_model(new_model): |
|
return gr.load( |
|
name=new_model, |
|
src=openai_gradio.registry, |
|
accept_token=True, |
|
fill_height=True |
|
) |
|
|
|
model_choice.change( |
|
fn=update_model, |
|
inputs=[model_choice], |
|
outputs=[chatgpt_interface] |
|
) |
|
with gr.Tab("Claude"): |
|
with gr.Row(): |
|
claude_model = gr.Dropdown( |
|
choices=[ |
|
'claude-3-5-sonnet-20241022', |
|
'claude-3-5-haiku-20241022', |
|
'claude-3-opus-20240229', |
|
'claude-3-sonnet-20240229', |
|
'claude-3-haiku-20240307' |
|
], |
|
value='claude-3-5-sonnet-20241022', |
|
label="Select Model", |
|
interactive=True |
|
) |
|
|
|
claude_interface = gr.load( |
|
name=claude_model.value, |
|
src=anthropic_gradio.registry, |
|
accept_token=True, |
|
fill_height=True |
|
) |
|
|
|
def update_claude_model(new_model): |
|
return gr.load( |
|
name=new_model, |
|
src=anthropic_gradio.registry, |
|
accept_token=True, |
|
fill_height=True |
|
) |
|
|
|
claude_model.change( |
|
fn=update_claude_model, |
|
inputs=[claude_model], |
|
outputs=[claude_interface] |
|
) |
|
with gr.Tab("Grok"): |
|
gr.load( |
|
name='grok-beta', |
|
src=xai_gradio.registry, |
|
accept_token=True, |
|
fill_height=True |
|
) |
|
with gr.Tab("Groq"): |
|
with gr.Row(): |
|
groq_model = gr.Dropdown( |
|
choices=[ |
|
'llama3-groq-8b-8192-tool-use-preview', |
|
'llama3-groq-70b-8192-tool-use-preview', |
|
'llama-3.2-1b-preview', |
|
'llama-3.2-3b-preview', |
|
'llama-3.2-11b-text-preview', |
|
'llama-3.2-90b-text-preview', |
|
'mixtral-8x7b-32768' |
|
], |
|
value='llama3-groq-70b-8192-tool-use-preview', |
|
label="Select Groq Model", |
|
interactive=True |
|
) |
|
|
|
groq_interface = gr.load( |
|
name=groq_model.value, |
|
src=groq_gradio.registry, |
|
fill_height=True |
|
) |
|
|
|
def update_groq_model(new_model): |
|
return gr.load( |
|
name=new_model, |
|
src=groq_gradio.registry, |
|
fill_height=True |
|
) |
|
|
|
groq_model.change( |
|
fn=update_groq_model, |
|
inputs=[groq_model], |
|
outputs=[groq_interface] |
|
) |
|
|
|
gr.Markdown(""" |
|
**Note:** You need a Groq API key to use these models. Get one at [Groq Cloud](https://console.groq.com/). |
|
""") |
|
with gr.Tab("Qwen"): |
|
with gr.Row(): |
|
qwen_model = gr.Dropdown( |
|
choices=[ |
|
'Qwen/Qwen2.5-72B-Instruct', |
|
'Qwen/Qwen2.5-Coder-32B-Instruct' |
|
], |
|
value='Qwen/Qwen2.5-72B-Instruct', |
|
label="Select Qwen Model", |
|
interactive=True |
|
) |
|
|
|
qwen_interface = gr.load( |
|
name=qwen_model.value, |
|
src=hyperbolic_gradio.registry, |
|
fill_height=True |
|
) |
|
|
|
def update_qwen_model(new_model): |
|
return gr.load( |
|
name=new_model, |
|
src=hyperbolic_gradio.registry, |
|
fill_height=True |
|
) |
|
|
|
qwen_model.change( |
|
fn=update_qwen_model, |
|
inputs=[qwen_model], |
|
outputs=[qwen_interface] |
|
) |
|
|
|
gr.Markdown(""" |
|
<div> |
|
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;"> |
|
</div> |
|
|
|
**Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/). |
|
""") |
|
with gr.Tab("Perplexity"): |
|
with gr.Row(): |
|
perplexity_model = gr.Dropdown( |
|
choices=[ |
|
|
|
'llama-3.1-sonar-small-128k-online', |
|
'llama-3.1-sonar-large-128k-online', |
|
'llama-3.1-sonar-huge-128k-online', |
|
|
|
'llama-3.1-sonar-small-128k-chat', |
|
'llama-3.1-sonar-large-128k-chat', |
|
|
|
'llama-3.1-8b-instruct', |
|
'llama-3.1-70b-instruct' |
|
], |
|
value='llama-3.1-sonar-large-128k-online', |
|
label="Select Perplexity Model", |
|
interactive=True |
|
) |
|
|
|
perplexity_interface = gr.load( |
|
name=perplexity_model.value, |
|
src=perplexity_gradio.registry, |
|
accept_token=True, |
|
fill_height=True |
|
) |
|
|
|
def update_perplexity_model(new_model): |
|
return gr.load( |
|
name=new_model, |
|
src=perplexity_gradio.registry, |
|
accept_token=True, |
|
fill_height=True |
|
) |
|
|
|
perplexity_model.change( |
|
fn=update_perplexity_model, |
|
inputs=[perplexity_model], |
|
outputs=[perplexity_interface] |
|
) |
|
|
|
gr.Markdown(""" |
|
**Note:** Models are grouped into three categories: |
|
- **Sonar Online Models**: Include search capabilities (beta access required) |
|
- **Sonar Chat Models**: Standard chat models |
|
- **Open Source Models**: Based on Hugging Face implementations |
|
|
|
For access to Online LLMs features, please fill out the [beta access form](https://perplexity.typeform.com/apiaccessform?typeform-source=docs.perplexity.ai). |
|
""") |
|
with gr.Tab("DeepSeek-V2.5"): |
|
gr.load( |
|
name='deepseek-ai/DeepSeek-V2.5', |
|
src=hyperbolic_gradio.registry, |
|
fill_height=True |
|
) |
|
gr.Markdown(""" |
|
<div> |
|
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic Logo" style="height: 50px; margin-right: 10px;"> |
|
</div> |
|
|
|
**Note:** This model is supported by Hyperbolic. Build your AI apps at [Hyperbolic](https://app.hyperbolic.xyz/). |
|
""") |
|
with gr.Tab("Mistral"): |
|
with gr.Row(): |
|
mistral_model = gr.Dropdown( |
|
choices=[ |
|
|
|
'mistral-large-latest', |
|
'pixtral-large-latest', |
|
'ministral-3b-latest', |
|
'ministral-8b-latest', |
|
'mistral-small-latest', |
|
'codestral-latest', |
|
'mistral-embed', |
|
'mistral-moderation-latest', |
|
|
|
'pixtral-12b-2409', |
|
'open-mistral-nemo', |
|
'open-codestral-mamba' |
|
], |
|
value='pixtral-large-latest', |
|
label="Select Mistral Model", |
|
interactive=True |
|
) |
|
|
|
mistral_interface = gr.load( |
|
name=mistral_model.value, |
|
src=mistral_gradio.registry, |
|
fill_height=True |
|
) |
|
|
|
def update_mistral_model(new_model): |
|
return gr.load( |
|
name=new_model, |
|
src=mistral_gradio.registry, |
|
fill_height=True |
|
) |
|
|
|
mistral_model.change( |
|
fn=update_mistral_model, |
|
inputs=[mistral_model], |
|
outputs=[mistral_interface], |
|
) |
|
|
|
gr.Markdown(""" |
|
**Note:** You need a Mistral API key to use these models. Get one at [Mistral AI Platform](https://console.mistral.ai/). |
|
|
|
Models are grouped into two categories: |
|
- **Premier Models**: Require a paid API key |
|
- **Free Models**: Available with free API keys |
|
|
|
Each model has different context window sizes (from 8k to 256k tokens) and specialized capabilities. |
|
""") |
|
with gr.Tab("Fireworks"): |
|
with gr.Row(): |
|
fireworks_model = gr.Dropdown( |
|
choices=[ |
|
'f1-preview', |
|
'f1-mini-preview', |
|
], |
|
value='f1-preview', |
|
label="Select Fireworks Model", |
|
interactive=True |
|
) |
|
|
|
fireworks_interface = gr.load( |
|
name=fireworks_model.value, |
|
src=fireworks_gradio.registry, |
|
fill_height=True |
|
) |
|
|
|
def update_fireworks_model(new_model): |
|
return gr.load( |
|
name=new_model, |
|
src=fireworks_gradio.registry, |
|
fill_height=True |
|
) |
|
|
|
fireworks_model.change( |
|
fn=update_fireworks_model, |
|
inputs=[fireworks_model], |
|
outputs=[fireworks_interface] |
|
) |
|
|
|
gr.Markdown(""" |
|
**Note:** You need a Fireworks AI API key to use these models. Get one at [Fireworks AI](https://app.fireworks.ai/). |
|
""") |
|
with gr.Tab("Cerebras"): |
|
with gr.Row(): |
|
cerebras_model = gr.Dropdown( |
|
choices=[ |
|
'llama3.1-8b', |
|
'llama3.1-70b', |
|
'llama3.1-405b' |
|
], |
|
value='llama3.1-70b', |
|
label="Select Cerebras Model", |
|
interactive=True |
|
) |
|
|
|
cerebras_interface = gr.load( |
|
name=cerebras_model.value, |
|
src=cerebras_gradio.registry, |
|
accept_token=True, |
|
fill_height=True |
|
) |
|
|
|
def update_cerebras_model(new_model): |
|
return gr.load( |
|
name=new_model, |
|
src=cerebras_gradio.registry, |
|
accept_token=True, |
|
fill_height=True |
|
) |
|
|
|
demo.launch(ssr_mode=False) |
|
|
|
|
|
|