File size: 25,885 Bytes
924d3bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import gradio as gr
from datasets import load_dataset
import matplotlib as mpl
mpl.use('Agg')
from typing import List
import matplotlib.pyplot as plt
import numpy as np
import joblib
import itertools
import pandas as pd

cached_artifacts = joblib.load("cached_data.pkl")

laion = load_dataset("society-ethics/laion2B-en_continents", split="train").to_pandas()
medmcqa = load_dataset("society-ethics/medmcqa_age_gender_custom", split="train").to_pandas()
stack = load_dataset("society-ethics/the-stack-tabs_spaces", split="train").to_pandas()\
            .drop(columns=["max_stars_repo_licenses", "max_issues_repo_licenses", "max_forks_repo_licenses"])

cached_artifacts["laion"]["text"] = {
    "title": "Disaggregating by continent with a built-in module",
    "description": """
    The [`laion/laion2b-en` dataset](https://huggingface.co/datasets/laion/laion2B-en), created by [LAION](https://laion.ai), is used to train image generation models such as [Stable Diffusion](https://huggingface.co/spaces/stabilityai/stable-diffusion). The dataset contains pairs of images and captions, but we might also be curious about the distribution of specific topics, such as <u>continents</u>, mentioned in the captions.

    The original dataset doesn't contain metadata about specific continents, but we can attempt to infer it from the `TEXT` feature with `disaggregators`. Note that several factors contribute to a high incidence of false positives, such as the fact that country and city names are frequently used as names for fashion products.
    """,
    "visualization": """
    This view shows you a visualization of the relative proportion of each label in the disaggregated dataset. For this dataset, we've only disaggregated by one category (continent), but there are many possible values for it. While there are many rows that haven't been flagged with a continent (check "None" and see!), this disaggregator doesn't assign *Multiple* continents.
    
    To see examples of individual rows, click over to the "Inspect" tab!    
    """,
    "code": """
    ```python
    from disaggregators import Disaggregator
    disaggregator = Disaggregator("continent", column="TEXT")
    
    # Note: this demo used a subset of the dataset
    from datasets import load_dataset
    ds = load_dataset("laion/laion2B-en", split="train", streaming=True).map(disaggregator)
    ```
    """
}

cached_artifacts["medmcqa"]["text"] = {
    "title": "Overriding configurations for built-in modules",
    "description": """
    Meta's [Galactica model](https://galactica.org) is trained on a large-scale scientific corpus, which includes the [`medmcqa` dataset](https://huggingface.co/datasets/medmcqa) of medical entrance exam questions. MedMCQA has a `question` feature which often contains a case scenario, where a hypothetical patient presents with a condition.

    The original dataset doesn't contain metadata about the <u>age</u> and <u>binary gender</u>, but we can infer them with the `age` and `gender` modules. If a module doesn't have the particular label options that you'd like, such as additional genders or specific age buckets, you can override the module's configuration. In this example we've configured the `age` module to use [NIH's MeSH age groups](https://www.ncbi.nlm.nih.gov/mesh/68009273).    
    """,
    "visualization": """
    Since we've disaggregated the MedMCQA dataset by *two* categories (age and binary gender), we can click on "Age + Gender" to visualize the proportions of the *intersections* of each group.
    
    There are two things to note about this example:
    1. The disaggregators for age and gender can flag rows as having more than one age or gender, which we've grouped here as "Multiple"
    2. If you look at the data through the "Inspect" tab, you'll notice that there are some false positives. `disaggregators` is in early development, and these modules are in a very early "proof of concept" stage! Keep an eye out as we develop more sophisticated algorithms for disaggregation, and [join us over on GitHub](https://github.com/huggingface/disaggregators) if you'd like to contribute ideas, documentation, or code.
    """,
    "code": """
    ```python
    from disaggregators import Disaggregator
    from disaggregators.disaggregation_modules.age import Age, AgeLabels, AgeConfig
        
    class MeSHAgeLabels(AgeLabels):
        INFANT = "infant"
        CHILD_PRESCHOOL = "child_preschool"
        CHILD = "child"
        ADOLESCENT = "adolescent"
        ADULT = "adult"
        MIDDLE_AGED = "middle_aged"
        AGED = "aged"
        AGED_80_OVER = "aged_80_over"
    
    age_config = AgeConfig(
        labels=MeSHAgeLabels,
        ages=[list(MeSHAgeLabels)],
        breakpoints=[0, 2, 5, 12, 18, 44, 64, 79]
    )
    
    age = Age(config=age_config, column="question")

    disaggregator = Disaggregator([age, "gender"], column="question")

    from datasets import load_dataset
    ds = load_dataset("medmcqa", split="train").map(disaggregator)
    ```
    """
}

cached_artifacts["stack"]["text"] = {
    "title": "Creating custom disaggregators",
    "description": """
    [The BigCode Project](https://www.bigcode-project.org/) recently released [`bigcode/the-stack`](https://huggingface.co/datasets/bigcode/the-stack), which contains contains over 6TB of permissively-licensed source code files covering 358 programming languages. One of the languages included is [JSX](https://reactjs.org/docs/introducing-jsx.html), which is an extension to JavaScript specifically designed for the [React UI library](https://reactjs.org/docs/introducing-jsx.html). Let's ask some questions about the React code in this dataset!
    
    1. React lets developers define UI components [as functions or as classes](https://reactjs.org/docs/components-and-props.html#function-and-class-components). Which style is more popular in this dataset?
    2. Programmers have long argued over using [tabs or spaces](https://www.youtube.com/watch?v=SsoOG6ZeyUI). Who's winning?
    
    `disaggregators` makes it easy to add your own disaggregation modules. See the code snippet below for an example πŸ€—
    """,
    "visualization": """
    Like the MedMCQA example, this dataset has also been disaggregated by more than one category. Using multiple disaggregation modules lets us get insights into interesting *intersections* of the subpopulations in our datasets.
    """,
    "code": """
    ```python
    from disaggregators import Disaggregator, DisaggregationModuleLabels, CustomDisaggregator

    class TabsSpacesLabels(DisaggregationModuleLabels):
        TABS = "tabs"
        SPACES = "spaces"
    
    class TabsSpaces(CustomDisaggregator):
        module_id = "tabs_spaces"
        labels = TabsSpacesLabels
    
        def __call__(self, row, *args, **kwargs):
            if "\\t" in row[self.column]:
                return {self.labels.TABS: True, self.labels.SPACES: False}
            else:
                return {self.labels.TABS: False, self.labels.SPACES: True}

    class ReactComponentLabels(DisaggregationModuleLabels):
        CLASS = "class"
        FUNCTION = "function"
    
    
    class ReactComponent(CustomDisaggregator):
        module_id = "react_component"
        labels = ReactComponentLabels
    
        def __call__(self, row, *args, **kwargs):
            if "extends React.Component" in row[self.column] or "extends Component" in row[self.column]:
                return {self.labels.CLASS: True, self.labels.FUNCTION: False}
            else:
                return {self.labels.CLASS: False, self.labels.FUNCTION: True}

    disaggregator = Disaggregator([TabsSpaces, ReactComponent], column="content")
    
    # Note: this demo used a subset of the dataset
    from datasets import load_dataset
    ds = load_dataset("bigcode/the-stack", data_dir="data/jsx", split="train", streaming=True).map(disaggregator)
    ```
    """
}


def create_plot(selected_fields, available_fields, distributions, feature_names, plot=None):
    plt.close('all')
    clean_fields = [field for field in selected_fields if field not in ["Multiple", "None"]]
    extra_options = [field for field in selected_fields if field in ["Multiple", "None"]]

    distributions = distributions.reorder_levels(
        sorted(list(available_fields)) + [idx for idx in distributions.index.names if idx not in available_fields]
    )
    distributions = distributions.sort_index()

    def get_tuple(field):
        return tuple(True if field == x else False for x in sorted(available_fields))

    masks = [get_tuple(field) for field in sorted(clean_fields)]
    data = [distributions.get(mask, 0) for mask in masks]
    data = [x.sum() if type(x) != int else x for x in data]

    if "Multiple" in extra_options:
        masks_mult = [el for el in itertools.product((True, False), repeat=len(available_fields)) if el.count(True) > 1]
        data = data + [sum([distributions.get(mask, pd.Series(dtype=float)).sum() for mask in masks_mult])]

    if "None" in extra_options:
        none_mask = tuple(False for x in available_fields)
        data = data + [distributions.get(none_mask, pd.Series(dtype=float)).sum()]

    fig, ax = plt.subplots()

    title = "Distribution "
    size = 0.3

    cmap = plt.colormaps["Set3"]
    outer_colors = cmap(np.arange(len(data)))

    total_sum = sum(data)
    all_fields = sorted(clean_fields) + sorted(extra_options)
    labels = [f"{feature_names.get(c, c)}\n{round(data[i] / total_sum * 100, 2)}%" for i, c in enumerate(all_fields)]

    ax.pie(data, radius=1, labels=labels, colors=outer_colors,
           wedgeprops=dict(width=size, edgecolor='w'))

    ax.set(aspect="equal", title=title)

    if plot is None:
        return gr.Plot(plt)
    else:
        new_plot = plot.update(plt)
        return new_plot


# TODO: Consolidate with the other plot function...
def create_nested_plot(selected_outer, available_outer, selected_inner, available_inner, distributions, feature_names, plot=None):
    plt.close('all')

    clean_outer = [field for field in selected_outer if field not in ["Multiple", "None"]]
    extra_outer = [field for field in selected_outer if field in ["Multiple", "None"]]

    clean_inner = [field for field in selected_inner if field not in ["Multiple", "None"]]
    extra_inner = [field for field in selected_inner if field in ["Multiple", "None"]]

    distributions = distributions.reorder_levels(
        sorted(list(available_outer)) + sorted(list(available_inner)) + sorted([idx for idx in distributions.index.names if idx not in (available_outer + available_inner)])
    )
    distributions = distributions.sort_index()

    def get_tuple(field, field_options):
        return tuple(True if field == x else False for x in sorted(field_options))

    masks_outer = [get_tuple(field, available_outer) for field in sorted(clean_outer)]
    masks_inner = [get_tuple(field, available_inner) for field in sorted(clean_inner)]

    data_inner = [[distributions.get(m_o + mask, 0) for mask in masks_inner] for m_o in masks_outer]

    masks_mult_inner = []
    masks_none_inner = []

    if "Multiple" in extra_inner:
        masks_mult_inner = [el for el in itertools.product((True, False), repeat=len(available_inner)) if el.count(True) > 1]
        masks_mult = [m_o + m_i for m_i in masks_mult_inner for m_o in masks_outer]
        mult_inner_count = [distributions.get(mask, pd.Series(dtype=float)).sum() for mask in masks_mult]
        data_inner = [di + [mult_inner_count[idx]] for idx, di in enumerate(data_inner)]

    if "None" in extra_inner:
        masks_none_inner = tuple(False for x in available_inner)
        masks_none = [m_o + masks_none_inner for m_o in masks_outer]
        none_inner_count = [distributions.get(mask, pd.Series(dtype=float)).sum() for mask in masks_none]
        data_inner = [di + [none_inner_count[idx]] for idx, di in enumerate(data_inner)]
        if len(available_inner) > 0:
            masks_none_inner = [masks_none_inner]

    if "Multiple" in extra_outer:
        masks_mult = [el for el in itertools.product((True, False), repeat=len(available_outer)) if el.count(True) > 1]
        data_inner = data_inner + [[
            sum([distributions.get(mask + mask_inner, pd.Series(dtype=float)).sum() for mask in masks_mult])
            for mask_inner in (masks_inner + masks_mult_inner + masks_none_inner)
        ]]

    if "None" in extra_outer:
        none_mask_outer = tuple(False for x in available_outer)
        data_inner = data_inner + [[distributions.get(none_mask_outer + mask, pd.Series(dtype=float)).sum() for mask in (masks_inner + masks_mult_inner + masks_none_inner)]]

    fig, ax = plt.subplots()

    title = "Distribution "
    size = 0.3

    cmap = plt.colormaps["Set3"]
    cmap2 = plt.colormaps["Set2"]
    outer_colors = cmap(np.arange(len(data_inner)))
    inner_colors = cmap2(np.arange(len(data_inner[0])))

    total_sum = sum(sum(data_inner, []))
    data_outer = [sum(x) for x in data_inner]
    all_fields_outer = sorted(clean_outer) + sorted(extra_outer)

    clean_labels_outer = [f"{feature_names.get(c, c)}\n{round(data_outer[i] / total_sum * 100, 2)}%" for i, c in enumerate(all_fields_outer)]
    clean_labels_inner = [feature_names[c] for c in sorted(clean_inner)]

    ax.pie(data_outer, radius=1, labels=clean_labels_outer, colors=outer_colors,
           wedgeprops=dict(width=size, edgecolor='w'))

    patches, _ = ax.pie(list(itertools.chain(*data_inner)), radius=1 - size, colors=inner_colors,
           wedgeprops=dict(width=size, edgecolor='w'))

    ax.set(aspect="equal", title=title)
    fig.legend(handles=patches, labels=clean_labels_inner + sorted(extra_inner), loc="lower left")

    if plot is None:
        return gr.Plot(plt)
    else:
        new_plot = plot.update(plt)
        return new_plot


def select_new_base_plot(plot, disagg_check, disagg_by, artifacts):
    if disagg_by == "Both":
        disaggs = sorted(list(artifacts["disaggregators"]))

        all_choices = sorted([[x for x in artifacts["data_fields"] if x.startswith(d)] for d in disaggs], key=len, reverse=True)

        selected_choices = list(artifacts["data_fields"])
        choices = selected_choices + [f"{disagg}.{extra}" for disagg in disaggs for extra in ["Multiple", "None"]]

        # Map feature names to labels
        choices = [artifacts["feature_names"].get(x, x) for x in choices]
        selected_choices = [artifacts["feature_names"].get(x, x) for x in selected_choices]

        # Choose new options
        new_check = disagg_check.update(choices=sorted(choices), value=selected_choices)

        # Generate plot
        new_plot = create_nested_plot(
            all_choices[0], all_choices[0],
            all_choices[1], all_choices[1],
            artifacts["distributions"],
            artifacts["feature_names"],
            plot=plot
        )

        return new_plot, new_check

    else:
        selected_choices = [field for field in artifacts["data_fields"] if field.startswith(disagg_by)]
        choices = selected_choices + ["Multiple", "None"]

        # Map feature names to labels
        choices_for_check = [artifacts["feature_names"].get(x, x) for x in choices]
        selected_choices_for_check = [artifacts["feature_names"].get(x, x) for x in selected_choices]

        # Choose new options
        new_check = disagg_check.update(choices=choices_for_check, value=selected_choices_for_check)

        # Generate plot
        new_plot = create_plot(
            sorted(selected_choices), sorted(selected_choices), artifacts["distributions"], artifacts["feature_names"],
            plot=plot
        )

        return new_plot, new_check


def select_new_sub_plot(plot, disagg_check, disagg_by, artifacts):
    if disagg_by == "Both":
        disaggs = sorted(list(artifacts["disaggregators"]))

        all_choices = sorted([[x for x in artifacts["data_fields"] if x.startswith(d)] for d in disaggs], key=len, reverse=True)

        choice1 = all_choices[0][0].split(".")[0]
        choice2 = all_choices[1][0].split(".")[0]

        check1 = [dc for dc in disagg_check if dc.startswith(choice1)]
        check2 = [dc for dc in disagg_check if dc.startswith(choice2)]

        check1 = ["Multiple" if c == f"{c.split('.')[0]}.Multiple" else c for c in check1]
        check1 = ["None" if c == f"{c.split('.')[0]}.None" else c for c in check1]
        check2 = ["Multiple" if c == f"{c.split('.')[0]}.Multiple" else c for c in check2]
        check2 = ["None" if c == f"{c.split('.')[0]}.None" else c for c in check2]

        new_plot = create_nested_plot(
            check1, all_choices[0],
            check2, all_choices[1],
            artifacts["distributions"],
            artifacts["feature_names"],
            plot=plot
        )

        return new_plot
    else:
        selected_choices = [field for field in artifacts["data_fields"] if field.startswith(disagg_by)]

        # Generate plot
        new_plot = create_plot(
            disagg_check, selected_choices, artifacts["distributions"], artifacts["feature_names"],
            plot=plot
        )

        return new_plot


def visualization_filter(plot, artifacts, default_value, intersect=False):
    def map_labels_to_fields(labels: List[str]):
        return [list(artifacts["feature_names"].keys())[list(artifacts["feature_names"].values()).index(x)] if not any([extra in x for extra in ["Multiple", "None"]]) else x for x in labels]

    def map_category_to_disaggregator(category: str):  # e.g. Gender, Age, Gender + Age -> gender, age, Both
        return list(artifacts["feature_names"].keys())[list(artifacts["feature_names"].values()).index(category)]

    choices = sorted(list(artifacts["disaggregators"]))
    if intersect:
        choices = choices + ["Both"]

    # Map categories to nice names
    choices = [artifacts["feature_names"][c] for c in choices]

    disagg_radio = gr.Radio(
        label="Disaggregate by...",
        choices=choices,
        value=artifacts["feature_names"][default_value],
        interactive=True
    )

    selected_choices = [field for field in artifacts["data_fields"] if field.startswith(f"{default_value}.")]
    choices = selected_choices + ["Multiple", "None"]

    # Map feature names to labels
    choices = [artifacts["feature_names"].get(x, x) for x in choices]
    selected_choices = [artifacts["feature_names"].get(x, x) for x in selected_choices]

    disagg_check = gr.CheckboxGroup(
        label="Features",
        choices=choices,
        interactive=True,
        value=selected_choices,
    )

    disagg_radio.change(
        lambda x: select_new_base_plot(plot, disagg_check, map_category_to_disaggregator(x), artifacts),
        inputs=[disagg_radio],
        outputs=[plot, disagg_check]
    )

    disagg_check.change(
        lambda x, y: select_new_sub_plot(plot, map_labels_to_fields(x), map_category_to_disaggregator(y), artifacts),
        inputs=[disagg_check, disagg_radio],
        outputs=[plot]
    )


def generate_components(dataset, artifacts, intersect=True):
    gr.Markdown(f"### {artifacts['text']['title']}")
    gr.Markdown(artifacts['text']['description'])

    with gr.Accordion(label="πŸ’» Click me to see the code!", open=False):
        gr.Markdown(artifacts["text"]["code"])

    with gr.Tab("Visualize"):
        with gr.Row(elem_id="visualization-window"):
            with gr.Column():
                disagg_by = sorted(list(artifacts["disaggregators"]))[0]
                selected_choices = [field for field in artifacts["data_fields"] if field.startswith(disagg_by)]
                plot = create_plot(
                    sorted(selected_choices),
                    sorted(selected_choices),
                    artifacts["distributions"],
                    artifacts["feature_names"]
                )

            with gr.Column():
                gr.Markdown("### Visualization")
                gr.Markdown(artifacts["text"]["visualization"])
                visualization_filter(plot, artifacts, disagg_by, intersect=intersect)
    with gr.Tab("Inspect"):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### Data Inspector")
                gr.Markdown("This tab lets you filter the disaggregated dataset and inspect individual elements. Set as many filters as you like, and then click \"Apply filters\" to fetch a random subset of rows that match *all* of the filters you've selected.")

                filter_groups = gr.CheckboxGroup(choices=sorted(list(artifacts["data_fields"])), label="Filters")
                fetch_subset = gr.Button("Apply filters")

                sample_dataframe = gr.State(value=dataset.sample(10))

                def fetch_new_samples(filters):
                    if len(filters) == 0:
                        new_dataset = dataset.sample(10)
                    else:
                        filter_query = " & ".join([f"`{f}`" for f in filters])
                        new_dataset = dataset.query(filter_query)
                        if new_dataset.shape[0] > 0:
                            new_dataset = new_dataset.sample(10)

                    new_samples = [[
                        x[1][artifacts["column"]],
                        ", ".join([col for col in artifacts["data_fields"] if x[1][col]]),
                    ] for x in new_dataset.iterrows()]
                    return sample_rows.update(samples=new_samples), new_dataset

                sample_rows = gr.Dataset(
                    samples=[[
                        x[1][artifacts["column"]],
                        ", ".join([col for col in artifacts["data_fields"] if x[1][col]]),
                    ] for x in sample_dataframe.value.iterrows()],
                    components=[gr.Textbox(visible=False), gr.Textbox(visible=False)],
                    type="index"
                )
            with gr.Column(scale=1):
                row_inspector = gr.DataFrame(
                    wrap=True,
                    visible=False
                )

            fetch_subset.click(
                fetch_new_samples,
                inputs=[filter_groups],
                outputs=[sample_rows, sample_dataframe],
            )

            sample_rows.click(
                lambda df, index: row_inspector.update(visible=True, value=df.iloc[index].reset_index()),
                inputs=[sample_dataframe, sample_rows],
                outputs=[row_inspector]
            )


with gr.Blocks(css="#visualization-window {flex-direction: row-reverse;}") as demo:
    gr.Markdown("# Exploring Disaggregated Data with πŸ€— Disaggregators")
    with gr.Accordion("About this demo πŸ‘€"):
        gr.Markdown("## What's in your dataset?")
        gr.Markdown("""
        Addressing fairness and bias in machine learning models is [more important than ever](https://www.vice.com/en/article/bvm35w/this-tool-lets-anyone-see-the-bias-in-ai-image-generators)! 
        One form of fairness is equal performance across different groups or features. 
        To measure this, evaluation datasets must be disaggregated across the different groups of interest.
        """)

        gr.Markdown("The `disaggregators` library ([GitHub](https://github.com/huggingface/disaggregators)) provides an interface and a collection of modules to help you disaggregate datasets by different groups. Click through each of the tabs below to see it in action!")
        gr.Markdown("""
        After tinkering with the demo, you can install πŸ€— Disaggregators with:
        ```bash
        pip install disaggregators
        ```
        """)
        gr.Markdown("Each tab below will show you a feature of `disaggregators` used on a different dataset. First, you'll learn about using the built-in disaggregation modules. The second tab will show you how to override the configurations for the existing modules. Finally, the third tab will show you how to incorporate your own custom modules.")

    with gr.Tab("🐊 LAION: Built-in Modules Example"):
        generate_components(laion, cached_artifacts["laion"], intersect=False)
    with gr.Tab("πŸ”§ MedMCQA: Configuration Example"):
        generate_components(medmcqa, cached_artifacts["medmcqa"])
    with gr.Tab("🎑 The Stack: Custom Disaggregation Example"):
        generate_components(stack, cached_artifacts["stack"])

    with gr.Accordion(label="πŸ’‘How is this calculated?", open=False):
        gr.Markdown("""
        ## Continent
        
        Continents are inferred by identifying geographic terms and their related countries using [geograpy3](https://github.com/somnathrakshit/geograpy3). The results are then mapped to [their respective continents](https://github.com/bigscience-workshop/data_sourcing/blob/master/sourcing_sprint/resources/country_regions.json).
        
        ## Age
        
        Ages are inferred by using [spaCy](https://spacy.io) to seek "date" tokens in strings.
        
        ## Gender
        
        Binary gender is inferred by checking for words against the [md_gender_bias](https://huggingface.co/datasets/md_gender_bias) dataset.
        
        ```
        @inproceedings{dinan-etal-2020-multi,
        title = "Multi-Dimensional Gender Bias Classification",
        author = "Dinan, Emily  and
          Fan, Angela  and
          Wu, Ledell  and
          Weston, Jason  and
          Kiela, Douwe  and
          Williams, Adina",
        year = "2020",
        publisher = "Association for Computational Linguistics",
        url = "https://www.aclweb.org/anthology/2020.emnlp-main.23",
        doi = "10.18653/v1/2020.emnlp-main.23",
        ``` 
        
        ## Learn more!
        
        Visit the [GitHub repository](https://github.com/huggingface/disaggregators) to learn about using the `disaggregators` library and to leave feedback πŸ€—
        """)


demo.launch()