File size: 4,470 Bytes
924d3bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from datasets import load_dataset
from disaggregators import Disaggregator, DisaggregationModuleLabels, CustomDisaggregator
from disaggregators.disaggregation_modules.age import Age, AgeLabels, AgeConfig

import matplotlib
matplotlib.use('TKAgg')

import joblib
import os

cache_file = "cached_data.pkl"
cache_dict = {}

if os.path.exists(cache_file):
    cache_dict = joblib.load("cached_data.pkl")

class MeSHAgeLabels(AgeLabels):
    INFANT = "infant"
    CHILD_PRESCHOOL = "child_preschool"
    CHILD = "child"
    ADOLESCENT = "adolescent"
    ADULT = "adult"
    MIDDLE_AGED = "middle_aged"
    AGED = "aged"
    AGED_80_OVER = "aged_80_over"


age = Age(
    config=AgeConfig(
        labels=MeSHAgeLabels,
        ages=[list(MeSHAgeLabels)],
        breakpoints=[0, 2, 5, 12, 18, 44, 64, 79]
    ),
    column="question"
)


class TabsSpacesLabels(DisaggregationModuleLabels):
    TABS = "tabs"
    SPACES = "spaces"


class TabsSpaces(CustomDisaggregator):
    module_id = "tabs_spaces"
    labels = TabsSpacesLabels

    def __call__(self, row, *args, **kwargs):
        if "\t" in row[self.column]:
            return {self.labels.TABS: True, self.labels.SPACES: False}
        else:
            return {self.labels.TABS: False, self.labels.SPACES: True}


class ReactComponentLabels(DisaggregationModuleLabels):
    CLASS = "class"
    FUNCTION = "function"


class ReactComponent(CustomDisaggregator):
    module_id = "react_component"
    labels = ReactComponentLabels

    def __call__(self, row, *args, **kwargs):
        if "extends React.Component" in row[self.column] or "extends Component" in row[self.column]:
            return {self.labels.CLASS: True, self.labels.FUNCTION: False}
        else:
            return {self.labels.CLASS: False, self.labels.FUNCTION: True}


configs = {
    "laion": {
        "disaggregation_modules": ["continent"],
        "dataset_name": "society-ethics/laion2B-en_continents",
        "column": "TEXT",
        "feature_names": {
            "continent.africa": "Africa",
            "continent.americas": "Americas",
            "continent.asia": "Asia",
            "continent.europe": "Europe",
            "continent.oceania": "Oceania",

            # Parent level
            "continent": "Continent",
        }
    },
    "medmcqa": {
        "disaggregation_modules": [age, "gender"],
        "dataset_name": "society-ethics/medmcqa_age_gender_custom",
        "column": "question",
        "feature_names": {
            "age.infant": "Infant",
            "age.child_preschool": "Preschool",
            "age.child": "Child",
            "age.adolescent": "Adolescent",
            "age.adult": "Adult",
            "age.middle_aged": "Middle Aged",
            "age.aged": "Aged",
            "age.aged_80_over": "Aged 80+",
            "gender.male": "Male",
            "gender.female": "Female",

            # Parent level
            "gender": "Gender",
            "age": "Age",
            "Both": "Age + Gender",
        }
    },
    "stack": {
        "disaggregation_modules": [TabsSpaces, ReactComponent],
        "dataset_name": "society-ethics/the-stack-tabs_spaces",
        "column": "content",
        "feature_names": {
            "react_component.class": "Class",
            "react_component.function": "Function",
            "tabs_spaces.tabs": "Tabs",
            "tabs_spaces.spaces": "Spaces",

            # Parent level
            "react_component": "React Component Syntax",
            "tabs_spaces": "Tabs vs. Spaces",
            "Both": "React Component Syntax + Tabs vs. Spaces",
        }
    }
}


def generate_cached_data(disaggregation_modules, dataset_name, column, feature_names):
    disaggregator = Disaggregator(disaggregation_modules, column=column)
    ds = load_dataset(dataset_name, split="train")
    df = ds.to_pandas()

    all_fields = {*disaggregator.fields, "None"}
    distributions = df[sorted(list(disaggregator.fields))].value_counts()

    return {
        "fields": all_fields,
        "data_fields": disaggregator.fields,
        "distributions": distributions,
        "disaggregators": [module.name for module in disaggregator.modules],
        "column": column,
        "feature_names": feature_names,
    }


cache_dict.update({
    "laion": generate_cached_data(**configs["laion"]),
    "medmcqa": generate_cached_data(**configs["medmcqa"]),
    "stack": generate_cached_data(**configs["stack"])
})

joblib.dump(cache_dict, cache_file)