llama-2-13b-chat / model.py
pcuenq's picture
pcuenq HF staff
13b-demo (#1)
76a154f
raw
history blame
1.94 kB
from threading import Thread
from typing import Iterator
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
model_id = 'meta-llama/Llama-2-13b-chat-hf'
if torch.cuda.is_available():
config = AutoConfig.from_pretrained(model_id)
config.pretraining_tp = 1
model = AutoModelForCausalLM.from_pretrained(
model_id,
config=config,
torch_dtype=torch.float16,
load_in_4bit=True,
device_map='auto'
)
else:
model = None
tokenizer = AutoTokenizer.from_pretrained(model_id)
def get_prompt(message: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
texts = [f'[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
for user_input, response in chat_history:
texts.append(f'{user_input} [/INST] {response} [INST] ')
texts.append(f'{message.strip()} [/INST]')
return ''.join(texts)
def run(message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.8,
top_p: float = 0.95,
top_k: int = 50) -> Iterator[str]:
prompt = get_prompt(message, chat_history, system_prompt)
inputs = tokenizer([prompt], return_tensors='pt').to("cuda")
streamer = TextIteratorStreamer(tokenizer,
timeout=10.,
skip_prompt=True,
skip_special_tokens=True)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield ''.join(outputs)