File size: 14,896 Bytes
55ca09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import math
import warnings

import torch
import torch.nn.functional as F
from einops import rearrange
from torch import nn
from torch.nn.functional import scaled_dot_product_attention  # q, k, v: BHLc

from models.helpers import DropPath
from models.rope import apply_rotary_emb

try:
    from flash_attn.ops.fused_dense import fused_mlp_func
except ImportError:
    fused_mlp_func = None

# this file only provides the blocks used in Switti transformer
__all__ = ["FFN", "SwiGLUFFN", "RMSNorm", "AdaLNSelfCrossAttn", "AdaLNBeforeHead"]


try:
    from apex.normalization import FusedRMSNorm as RMSNorm
except ImportError:
    warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")

    class RMSNorm(torch.nn.Module):
        def __init__(self, dim: int, eps: float = 1e-6):
            """
            Initialize the RMSNorm normalization layer.

            Args:
                dim (int): The dimension of the input tensor.
                eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

            Attributes:
                eps (float): A small value added to the denominator for numerical stability.
                weight (nn.Parameter): Learnable scaling parameter.

            """
            super().__init__()
            self.eps = eps
            self.weight = nn.Parameter(torch.ones(dim))

        def _norm(self, x):
            """
            Apply the RMSNorm normalization to the input tensor.

            Args:
                x (torch.Tensor): The input tensor.

            Returns:
                torch.Tensor: The normalized tensor.

            """
            return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

        def forward(self, x):
            """
            Forward pass through the RMSNorm layer.

            Args:
                x (torch.Tensor): The input tensor.

            Returns:
                torch.Tensor: The output tensor after applying RMSNorm.

            """
            output = self._norm(x.float()).type_as(x)
            return output * self.weight


class FFN(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        drop=0.0,
        fused_if_available=True,
    ):
        super().__init__()
        self.fused_mlp_func = fused_mlp_func if fused_if_available else None
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = nn.GELU(approximate="tanh")
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop, inplace=True) if drop > 0 else nn.Identity()

    def forward(self, x):
        if self.fused_mlp_func is not None:
            return self.drop(
                self.fused_mlp_func(
                    x=x,
                    weight1=self.fc1.weight,
                    weight2=self.fc2.weight,
                    bias1=self.fc1.bias,
                    bias2=self.fc2.bias,
                    activation="gelu_approx",
                    save_pre_act=self.training,
                    return_residual=False,
                    checkpoint_lvl=0,
                    heuristic=0,
                    process_group=None,
                )
            )
        else:
            return self.drop(self.fc2(self.act(self.fc1(x))))

    def extra_repr(self) -> str:
        return f"fused_mlp_func={self.fused_mlp_func is not None}"


class SwiGLUFFN(nn.Module):
    def __init__(
        self,
        dim: int,
        ff_mult: float = 8 / 3,
    ):
        """
        Initialize the FeedForward module.

        Args:
            dim (int): Input dimension.
            ff_mult (float, optional): Custom multiplier for hidden dimension. Defaults to 4.
        """
        super().__init__()
        hidden_dim = int(dim * ff_mult)

        self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
        self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
        self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
        self.fused_mlp_func = None
        self._init()

    def _init(self):
        for module in self.modules():
            if isinstance(module, nn.Linear):
                nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.zeros_(module.bias)

    # @torch.compile
    def _forward_silu_gating(self, x_gate: torch.Tensor, x_up: torch.Tensor):
        return F.silu(x_gate) * x_up

    def forward(self, x: torch.Tensor):
        return self.down_proj(
            self._forward_silu_gating(self.gate_proj(x), self.up_proj(x))
        )

    def extra_repr(self) -> str:
        return f"fused_mlp_func={self.fused_mlp_func is not None}"


class CrossAttention(nn.Module):
    def __init__(
        self,
        embed_dim: int = 768,
        context_dim: int = 2048,
        num_heads: int = 12,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        qk_norm: bool = False,
    ):
        super().__init__()
        assert embed_dim % num_heads == 0
        assert attn_drop == 0.0

        self.num_heads, self.head_dim = (
            num_heads,
            embed_dim // num_heads,
        )
        self.qk_norm = qk_norm
        self.scale = 1 / math.sqrt(self.head_dim)

        self.q_norm = nn.LayerNorm(embed_dim, eps=1e-6, elementwise_affine=False)
        self.k_norm = nn.LayerNorm(embed_dim, eps=1e-6, elementwise_affine=False)

        self.to_q = nn.Linear(embed_dim, embed_dim, bias=True)
        self.to_kv = nn.Linear(context_dim, embed_dim * 2, bias=True)

        self.proj = nn.Linear(embed_dim, embed_dim)
        self.proj_drop = (
            nn.Dropout(proj_drop, inplace=True) if proj_drop > 0 else nn.Identity()
        )
        self.attn_drop = attn_drop

        # only used during inference
        self.caching, self.cached_k, self.cached_v = False, None, None

    def kv_caching(self, enable: bool):
        self.caching, self.cached_k, self.cached_v = enable, None, None

    def forward(self, x, context, context_attn_bias=None, freqs_cis=None):
        B, L, C = x.shape
        context_B, context_L, context_C = context.shape
        assert B == context_B

        q = self.to_q(x).view(B, L, -1)  # BLD , self.num_heads, self.head_dim)
        if self.qk_norm:
            q = self.q_norm(q)

        q = q.view(B, L, self.num_heads, self.head_dim)
        q = q.permute(0, 2, 1, 3)  # BHLc

        if self.cached_k is None:
            # not using caches or first scale inference
            kv = self.to_kv(context).view(B, context_L, 2, -1)  # qkv: BL3D
            k, v = kv.permute(2, 0, 1, 3).unbind(dim=0)  # q or k or v: BLHD

            if self.qk_norm:
                k = self.k_norm(k)

            k = k.view(B, context_L, self.num_heads, self.head_dim)
            k = k.permute(0, 2, 1, 3)  # BHLc

            v = v.view(B, context_L, self.num_heads, self.head_dim)
            v = v.permute(0, 2, 1, 3)  # BHLc

            if self.caching:
                self.cached_k = k
                self.cached_v = v
        else:
            k = self.cached_k
            v = self.cached_v

        if context_attn_bias is not None:
            context_attn_bias = rearrange(context_attn_bias, "b j -> b 1 1 j")

        dropout_p = self.attn_drop if self.training else 0.0
        out = (
            scaled_dot_product_attention(
                query=q,
                key=k,
                value=v,
                scale=self.scale,
                attn_mask=context_attn_bias,
                dropout_p=dropout_p,
            )
            .transpose(1, 2)
            .reshape(B, L, C)
        )

        return self.proj_drop(self.proj(out))


class SelfAttention(nn.Module):
    def __init__(
        self,
        block_idx: int,
        embed_dim: int = 768,
        num_heads: int = 12,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        qk_norm: bool = False,
    ):
        super().__init__()
        assert embed_dim % num_heads == 0
        self.block_idx, self.num_heads, self.head_dim = (
            block_idx,
            num_heads,
            embed_dim // num_heads,
        )
        self.qk_norm = qk_norm
        self.scale = 1 / math.sqrt(self.head_dim)

        self.q_norm = nn.LayerNorm(embed_dim, eps=1e-6, elementwise_affine=False)
        self.k_norm = nn.LayerNorm(embed_dim, eps=1e-6, elementwise_affine=False)

        self.to_qkv = nn.Linear(embed_dim, embed_dim * 3, bias=True)
        self.proj = nn.Linear(embed_dim, embed_dim)
        self.proj_drop = (
            nn.Dropout(proj_drop, inplace=True) if proj_drop > 0 else nn.Identity()
        )
        self.attn_drop = attn_drop

        # only used during inference
        self.caching, self.cached_k, self.cached_v = False, None, None

    def kv_caching(self, enable: bool):
        self.caching, self.cached_k, self.cached_v = enable, None, None

    # NOTE: attn_bias is None during inference because kv cache is enabled
    def forward(self, x, attn_bias, freqs_cis: torch.Tensor = None):
        B, L, C = x.shape

        qkv = self.to_qkv(x).view(B, L, 3, -1)
        q, k, v = qkv.permute(2, 0, 1, 3).unbind(dim=0)  # q or k or v: BLD

        if self.qk_norm:
            q = self.q_norm(q)
            k = self.k_norm(k)

        q = q.view(B, L, self.num_heads, self.head_dim)
        q = q.permute(0, 2, 1, 3)  # BHLc
        k = k.view(B, L, self.num_heads, self.head_dim)
        k = k.permute(0, 2, 1, 3)  # BHLc
        v = v.view(B, L, self.num_heads, self.head_dim)
        v = v.permute(0, 2, 1, 3)  # BHLc
        dim_cat = 2

        if freqs_cis is not None:
            q = apply_rotary_emb(q, freqs_cis=freqs_cis)
            k = apply_rotary_emb(k, freqs_cis=freqs_cis)

        if self.caching:
            if self.cached_k is None:
                self.cached_k = k
                self.cached_v = v
            else:
                k = self.cached_k = torch.cat((self.cached_k, k), dim=dim_cat)
                v = self.cached_v = torch.cat((self.cached_v, v), dim=dim_cat)

        dropout_p = self.attn_drop if self.training else 0.0
        out = (
            scaled_dot_product_attention(
                query=q,
                key=k,
                value=v,
                scale=self.scale,
                attn_mask=attn_bias,
                dropout_p=dropout_p,
            )
            .transpose(1, 2)
            .reshape(B, L, C)
        )

        return self.proj_drop(self.proj(out))

    def extra_repr(self) -> str:
        return f"attn_l2_norm={self.qk_norm}"


class AdaLNSelfCrossAttn(nn.Module):
    def __init__(
        self,
        block_idx,
        last_drop_p,
        embed_dim,
        cond_dim,
        num_heads,
        mlp_ratio=4.0,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        qk_norm=False,
        context_dim=None,
        use_swiglu_ffn=False,
        norm_eps=1e-6,
        use_crop_cond=False,
    ):
        super().__init__()
        assert attn_drop == 0.0
        assert qk_norm

        self.block_idx, self.last_drop_p, self.C = block_idx, last_drop_p, embed_dim
        self.C, self.D = embed_dim, cond_dim
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.attn = SelfAttention(
            block_idx=block_idx,
            embed_dim=embed_dim,
            num_heads=num_heads,
            attn_drop=attn_drop,
            proj_drop=drop,
            qk_norm=qk_norm,
        )

        if context_dim:
            self.cross_attn = CrossAttention(
                embed_dim=embed_dim,
                context_dim=context_dim,
                num_heads=num_heads,
                attn_drop=attn_drop,
                proj_drop=drop,
                qk_norm=qk_norm,
            )
        else:
            self.cross_attn = None

        if use_swiglu_ffn:
            self.ffn = SwiGLUFFN(dim=embed_dim)
        else:
            self.ffn = FFN(
                in_features=embed_dim,
                hidden_features=round(embed_dim * mlp_ratio),
                drop=drop,
            )

        self.self_attention_norm1 = RMSNorm(embed_dim, eps=norm_eps)
        self.self_attention_norm2 = RMSNorm(embed_dim, eps=norm_eps)
        self.cross_attention_norm1 = RMSNorm(embed_dim, eps=norm_eps)
        self.cross_attention_norm2 = RMSNorm(embed_dim, eps=norm_eps)

        self.ffn_norm1 = RMSNorm(embed_dim, eps=norm_eps)
        self.ffn_norm2 = RMSNorm(embed_dim, eps=norm_eps)

        self.attention_y_norm = RMSNorm(context_dim, eps=norm_eps)

        # AdaLN
        lin = nn.Linear(cond_dim, 6 * embed_dim)
        self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin)

        self.fused_add_norm_fn = None
        
        self.use_crop_cond = use_crop_cond
        if use_crop_cond:
            self.crop_cond_scales = nn.Parameter(torch.zeros(1, cond_dim))

    # NOTE: attn_bias is None during inference because kv cache is enabled
    def forward(
        self,
        x,
        cond_BD,
        attn_bias,
        crop_cond=None,
        context=None,
        context_attn_bias=None,
        freqs_cis=None,
    ):  # C: embed_dim, D: cond_dim
        
        if self.use_crop_cond:
            assert crop_cond is not None
            cond_BD = cond_BD + self.crop_cond_scales * crop_cond
            
        gamma1, gamma2, scale1, scale2, shift1, shift2 = (
            self.ada_lin(cond_BD).view(-1, 1, 6, self.C).unbind(2)
        )
        x = x + self.self_attention_norm2(
            self.attn(
                self.self_attention_norm1(x).mul(scale1.add(1)).add(shift1),
                attn_bias=attn_bias,
                freqs_cis=freqs_cis,
            )
        ).mul(gamma1)
        if context is not None:
            x = x + self.cross_attention_norm2(
                self.cross_attn(
                    self.cross_attention_norm1(x),
                    self.attention_y_norm(context),
                    context_attn_bias=context_attn_bias,
                    freqs_cis=freqs_cis,
                )
            )
        x = x + self.ffn_norm2(
            self.ffn(self.ffn_norm1(x).mul(scale2.add(1)).add(shift2))
        ).mul(gamma2)
        return x


class AdaLNBeforeHead(nn.Module):
    def __init__(self, C, D, norm_layer):  # C: embed_dim, D: cond_dim
        super().__init__()
        self.C, self.D = C, D
        self.ln_wo_grad = norm_layer(C, elementwise_affine=False)
        self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), nn.Linear(D, 2 * C))

    def forward(self, x_BLC: torch.Tensor, cond_BD: torch.Tensor):
        scale, shift = self.ada_lin(cond_BD).view(-1, 1, 2, self.C).unbind(2)
        return self.ln_wo_grad(x_BLC).mul(scale.add(1)).add_(shift)