Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,654 Bytes
55ca09f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import math
from functools import partial
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
from diffusers.models.embeddings import GaussianFourierProjection
from models.basic_switti import AdaLNBeforeHead, AdaLNSelfCrossAttn
from models.rope import compute_axial_cis
def get_crop_condition(
heights: list,
widths: list,
base_size=512
):
if type(heights[0]) == type(widths[0]) == str:
heights = [int(h) for h in heights]
widths = [int(w) for w in widths]
h = torch.tensor(heights, dtype=torch.int).unsqueeze(1)
w = torch.tensor(widths, dtype=torch.int).unsqueeze(1)
hw = torch.cat([h, w], dim=1)
ratio = base_size / hw.min(-1)[0]
orig_size = (hw * ratio[:, None]).to(torch.int)
crop_coords = ((orig_size - base_size) // 2).clamp(min=0)
crop_cond = torch.cat([orig_size, crop_coords], dim=1)
return crop_cond
class Switti(nn.Module):
def __init__(
self,
Cvae=32,
V=4096,
rope=True,
rope_theta=10000,
rope_size=128,
depth=16,
embed_dim=1024,
num_heads=16,
mlp_ratio=4.0,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_eps=1e-6,
attn_l2_norm=True,
patch_nums=(1, 2, 3, 4, 5, 6, 8, 10, 13, 16), # 10 steps by default
fused_if_available=True,
use_swiglu_ffn=True,
use_ar=False,
use_crop_cond=True,
):
super().__init__()
# 0. hyperparameters
assert embed_dim % num_heads == 0
self.depth, self.C, self.D, self.num_heads = (
depth,
embed_dim,
embed_dim,
num_heads,
)
self.Cvae, self.V = Cvae, V
self.patch_nums: Tuple[int] = patch_nums
self.L = sum(pn**2 for pn in self.patch_nums)
self.first_l = self.patch_nums[0] ** 2
self.rope = rope
self.num_stages_minus_1 = len(self.patch_nums) - 1
self.rng = torch.Generator(device="cuda")
# 1. input (word) embedding
self.word_embed = nn.Linear(self.Cvae, self.C)
# 2. text embedding
self.pooled_embed_size = 1280
self.context_dim = 1280 + 768
self.text_pooler = nn.Linear(self.pooled_embed_size, self.D)
init_std = math.sqrt(1 / self.C / 3)
self.pos_start = nn.Parameter(torch.empty(1, self.first_l, self.C))
nn.init.trunc_normal_(self.pos_start.data, mean=0, std=init_std)
# 3. position embedding
if not self.rope:
# absolute position embedding
pos_1LC = []
for i, pn in enumerate(self.patch_nums):
pe = torch.empty(1, pn * pn, self.C)
nn.init.trunc_normal_(pe, mean=0, std=init_std)
pos_1LC.append(pe)
pos_1LC = torch.cat(pos_1LC, dim=1) # 1, L, C
assert tuple(pos_1LC.shape) == (1, self.L, self.C)
self.pos_1LC = nn.Parameter(pos_1LC)
self.freqs_cis = None
else:
# RoPE position embedding
assert (
self.C // self.num_heads
) % 4 == 0, "2d rope needs head dim to be divisible by 4"
patch_nums_m1 = tuple(pn - 1 if pn > 1 else 1 for pn in self.patch_nums)
self.compute_cis = partial(compute_axial_cis, dim=self.C // self.num_heads)
freqs_cis = []
for i, pn in enumerate(self.patch_nums):
norm_coeff = rope_size / patch_nums_m1[i]
cur_freqs = self.compute_cis(
end_x=pn, end_y=pn, theta=rope_theta, norm_coeff=norm_coeff
)
freqs_cis.append(cur_freqs[None, ...])
self.freqs_cis = torch.cat(freqs_cis, dim=1) # 1, L, C // 2 -- complex
# level embedding (similar to GPT's segment embedding,
# used to distinguish different levels of token pyramid)
self.lvl_embed = nn.Embedding(len(self.patch_nums), self.C)
nn.init.trunc_normal_(self.lvl_embed.weight.data, mean=0, std=init_std)
# 4. backbone blocks
self.drop_path_rate = drop_path_rate
# stochastic depth decay rule (linearly increasing)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
self.blocks = nn.ModuleList([])
for block_idx in range(depth):
self.blocks.append(
AdaLNSelfCrossAttn(
cond_dim=self.D,
block_idx=block_idx,
embed_dim=self.C,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[block_idx],
last_drop_p=0 if block_idx == 0 else dpr[block_idx - 1],
qk_norm=attn_l2_norm,
context_dim=self.context_dim,
use_swiglu_ffn=use_swiglu_ffn,
norm_eps=norm_eps,
use_crop_cond=use_crop_cond,
)
)
fused_add_norm_fns = [b.fused_add_norm_fn is not None for b in self.blocks]
self.using_fused_add_norm_fn = any(fused_add_norm_fns)
print(
f"\n[constructor] ==== fused_if_available={fused_if_available} "
f"(fusing_add_ln={sum(fused_add_norm_fns)}/{self.depth}, "
f"fusing_mlp={sum(b.ffn.fused_mlp_func is not None for b in self.blocks)}/{self.depth}) ==== \n"
f" [Switti config ] embed_dim={embed_dim}, num_heads={num_heads}, "
f"depth={depth}, mlp_ratio={mlp_ratio}\n"
f" [drop ratios ] drop_rate={drop_rate}, attn_drop_rate={attn_drop_rate}, "
f"drop_path_rate={drop_path_rate:g} ({torch.linspace(0, drop_path_rate, depth)})",
end="\n\n",
flush=True,
)
# Prepare crop condition embedder
self.use_crop_cond = use_crop_cond
if use_crop_cond:
# crop condition is repredsented with 4 int values. each is embeded to self.D // 4 dim
assert self.D % 8 == 0
self.crop_embed = GaussianFourierProjection(
self.D // 2 // 4, set_W_to_weight=False, log=False, flip_sin_to_cos=False
)
self.crop_proj = nn.Linear(self.D, self.D)
# 5. attention mask used in training (for masking out the future)
# it won't be used in inference, since kv cache is enabled
self.use_ar = use_ar
d: torch.Tensor = torch.cat(
[torch.full((pn * pn,), i) for i, pn in enumerate(self.patch_nums)]
).view(1, self.L, 1)
dT = d.transpose(1, 2) # dT: 11L
lvl_1L = dT[:, 0].contiguous()
self.register_buffer("lvl_1L", lvl_1L)
if self.use_ar:
attn_bias_for_masking = torch.where(d >= dT, 0.0, -torch.inf)
else:
attn_bias_for_masking = torch.where(d == dT, 0.0, -torch.inf)
attn_bias_for_masking = attn_bias_for_masking.reshape(1, 1, self.L, self.L)
self.register_buffer(
"attn_bias_for_masking", attn_bias_for_masking.contiguous()
)
# 6. classifier head
norm_layer = partial(nn.LayerNorm, eps=norm_eps)
self.head_nm = AdaLNBeforeHead(self.C, self.D, norm_layer=norm_layer)
self.head = nn.Linear(self.C, self.V)
# By default disable gradient checkpointing
self.use_gradient_checkpointing = False
def enable_gradient_checkpointing(self):
self.use_gradient_checkpointing = True
def disable_gradient_checkpointing(self):
self.use_gradient_checkpointing = False
def get_logits(
self,
h_or_h_and_residual: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
cond_BD: Optional[torch.Tensor],
):
if not isinstance(h_or_h_and_residual, torch.Tensor):
h, resi = h_or_h_and_residual # fused_add_norm must be used
h = resi + self.blocks[-1].drop_path(h)
else: # fused_add_norm is not used
h = h_or_h_and_residual
return self.head(self.head_nm(h, cond_BD))
def forward(
self,
x_BLCv_wo_first_l: torch.Tensor,
prompt_embeds: torch.Tensor,
pooled_prompt_embeds: torch.Tensor,
prompt_attn_bias: torch.Tensor,
batch_height: list[int] | None = None,
batch_width: list[int] | None = None,
) -> torch.Tensor: # returns logits_BLV
"""
:param x_BLCv_wo_first_l: teacher forcing input (B, self.L-self.first_l, self.Cvae)
:param prompt_embeds (B, context_len, self.context_dim):
text features from pipe.text_encoder and pipe.text_encoder_2,
concatenated along dim=-1, padded to longest along dim=1
:param pooled_prompt_embeds (B, self.pooled_embed_size):
pooled text features from pipe.text_encoder_2
:param prompt_attn_bias (B, context_len):
boolean mask to specify which tokens are not padding
:param batch_height (B,): original height of images in a batch.
:param batch_width (B,): original width of images in a batch.
Only used when self.use_crop_cond = True
:return: logits BLV, V is vocab_size
"""
bg, ed = 0, self.L
B = x_BLCv_wo_first_l.shape[0]
with torch.amp.autocast('cuda', enabled=False):
pooled_prompt_embeds = self.text_pooler(pooled_prompt_embeds)
sos = cond_BD = pooled_prompt_embeds
sos = sos.unsqueeze(1).expand(B, self.first_l, -1) + self.pos_start.expand(
B, self.first_l, -1
)
x_BLC = torch.cat(
(sos, self.word_embed(x_BLCv_wo_first_l.float())), dim=1
)
x_BLC += self.lvl_embed(
self.lvl_1L[:, :ed].expand(B, -1)
) # lvl: BLC; pos: 1LC
if not self.rope:
x_BLC += self.pos_1LC[:, :ed]
attn_bias = self.attn_bias_for_masking[:, :, :ed, :ed]
if self.use_crop_cond:
crop_coords = get_crop_condition(batch_height, batch_width).to(cond_BD.device)
crop_embed = self.crop_embed(crop_coords.view(-1)).reshape(B, self.D)
crop_cond = self.crop_proj(crop_embed)
else:
crop_cond = None
# hack: get the dtype if mixed precision is used
temp = x_BLC.new_ones(8, 8)
main_type = torch.matmul(temp, temp).dtype
x_BLC = x_BLC.to(dtype=main_type)
cond_BD = cond_BD.to(dtype=main_type)
attn_bias = attn_bias.to(dtype=main_type)
for block in self.blocks:
if self.use_gradient_checkpointing:
x_BLC = torch.utils.checkpoint.checkpoint(
block,
x=x_BLC,
cond_BD=cond_BD,
attn_bias=attn_bias,
context=prompt_embeds,
freqs_cis=self.freqs_cis,
context_attn_bias=prompt_attn_bias,
crop_cond=crop_cond,
use_reentrant=False,
)
else:
x_BLC = block(
x=x_BLC,
cond_BD=cond_BD,
attn_bias=attn_bias,
context=prompt_embeds,
freqs_cis=self.freqs_cis,
context_attn_bias=prompt_attn_bias,
crop_cond=crop_cond,
)
with torch.amp.autocast('cuda', enabled=not self.training):
x_BLC = self.get_logits(x_BLC, cond_BD.float())
return x_BLC # logits BLV, V is vocab_size
def init_weights(
self,
init_adaln=0.5,
init_adaln_gamma=1e-5,
init_head=0.02,
init_std=0.02,
):
if init_std < 0:
init_std = (1 / self.C / 3) ** 0.5 # init_std < 0: automated
print(f"[init_weights] {type(self).__name__} with {init_std=:g}")
for m in self.modules():
with_weight = hasattr(m, "weight") and m.weight is not None
with_bias = hasattr(m, "bias") and m.bias is not None
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight.data, std=init_std)
if with_bias:
m.bias.data.zero_()
elif isinstance(m, nn.Embedding):
nn.init.trunc_normal_(m.weight.data, std=init_std)
if m.padding_idx is not None:
m.weight.data[m.padding_idx].zero_()
elif isinstance(
m,
(
nn.LayerNorm,
nn.BatchNorm1d,
nn.BatchNorm2d,
nn.BatchNorm3d,
nn.SyncBatchNorm,
nn.GroupNorm,
nn.InstanceNorm1d,
nn.InstanceNorm2d,
nn.InstanceNorm3d,
),
):
if with_weight:
m.weight.data.fill_(1.0)
if with_bias:
m.bias.data.zero_()
if init_head >= 0:
if isinstance(self.head, nn.Linear):
self.head.weight.data.mul_(init_head)
self.head.bias.data.zero_()
elif isinstance(self.head, nn.Sequential):
self.head[-1].weight.data.mul_(init_head)
self.head[-1].bias.data.zero_()
if isinstance(self.head_nm, AdaLNBeforeHead):
self.head_nm.ada_lin[-1].weight.data.mul_(init_adaln)
if (
hasattr(self.head_nm.ada_lin[-1], "bias")
and self.head_nm.ada_lin[-1].bias is not None
):
self.head_nm.ada_lin[-1].bias.data.zero_()
depth = len(self.blocks)
for block in self.blocks:
block.attn.proj.weight.data.div_(math.sqrt(2 * depth))
block.cross_attn.proj.weight.data.div_(math.sqrt(2 * depth))
if hasattr(block.ffn, "fc2"):
block.ffn.fc2.weight.data.div_(math.sqrt(2 * depth))
if hasattr(block, "ada_lin"):
block.ada_lin[-1].weight.data[2 * self.C :].mul_(init_adaln)
block.ada_lin[-1].weight.data[: 2 * self.C].mul_(init_adaln_gamma)
if (
hasattr(block.ada_lin[-1], "bias")
and block.ada_lin[-1].bias is not None
):
block.ada_lin[-1].bias.data.zero_()
elif hasattr(block, "ada_gss"):
block.ada_gss.data[:, :, 2:].mul_(init_adaln)
block.ada_gss.data[:, :, :2].mul_(init_adaln_gamma)
def extra_repr(self):
return f"drop_path_rate={self.drop_path_rate:g}"
class SwittiHF(Switti, PyTorchModelHubMixin):
# tags=["image-generation"]):
def __init__(
self,
depth=30,
rope=True,
rope_theta=10000,
rope_size=128,
use_swiglu_ffn=True,
use_ar=False,
use_crop_cond=True,
):
heads = depth
width = depth * 64
super().__init__(
depth=depth,
embed_dim=width,
num_heads=heads,
patch_nums=(1, 2, 3, 4, 6, 9, 13, 18, 24, 32),
rope=rope,
rope_theta=rope_theta,
rope_size=rope_size,
use_swiglu_ffn=use_swiglu_ffn,
use_ar=use_ar,
use_crop_cond=use_crop_cond,
)
|