File size: 9,546 Bytes
55ca09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94cd78d
 
 
 
 
 
 
55ca09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e17711
55ca09f
1e17711
55ca09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e17711
 
55ca09f
 
 
 
 
 
 
 
e5b0112
55ca09f
 
e5b0112
55ca09f
 
1e17711
 
55ca09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e17711
 
 
 
e5b0112
55ca09f
1e17711
 
55ca09f
1e17711
55ca09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
from torchvision.transforms import ToPILImage
from PIL.Image import Image as PILImage

from models.vqvae import VQVAEHF
from models.clip import FrozenCLIPEmbedder
from models.switti import SwittiHF, get_crop_condition
from models.helpers import sample_with_top_k_top_p_, gumbel_softmax_with_rng


class SwittiPipeline:
    vae_path = "yresearch/VQVAE-Switti"
    text_encoder_path = "openai/clip-vit-large-patch14"
    text_encoder_2_path = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"

    def __init__(self, switti, vae, text_encoder, text_encoder_2, device,
                dtype=torch.bfloat16,
                ):
        self.switti = switti.to(dtype)
        self.vae = vae.to(dtype)
        self.text_encoder = text_encoder.to(dtype)
        self.text_encoder_2 = text_encoder_2.to(dtype)

        self.switti.eval()
        self.vae.eval()

        self.device = device

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, device="cuda"):
        switti = SwittiHF.from_pretrained(pretrained_model_name_or_path).to(device)
        vae = VQVAEHF.from_pretrained(cls.vae_path).to(device)
        text_encoder = FrozenCLIPEmbedder(cls.text_encoder_path, device=device)
        text_encoder_2 = FrozenCLIPEmbedder(cls.text_encoder_2_path, device=device)

        return cls(switti, vae, text_encoder, text_encoder_2, device)

    @staticmethod
    def to_image(tensor):
        return [ToPILImage()(
            (255 * img.cpu().detach()).to(torch.uint8))
        for img in tensor]

    def _encode_prompt(self, prompt: str | list[str]):
        prompt = [prompt] if isinstance(prompt, str) else prompt
        encodings = [
            self.text_encoder.encode(prompt),
            self.text_encoder_2.encode(prompt),
        ]
        prompt_embeds = torch.concat(
            [encoding.last_hidden_state for encoding in encodings], dim=-1
        )
        pooled_prompt_embeds = encodings[-1].pooler_output
        attn_bias = encodings[-1].attn_bias

        return prompt_embeds, pooled_prompt_embeds, attn_bias

    def encode_prompt(
        self,
        prompt: str | list[str],
        null_prompt: str = "",
        encode_null: bool = True,
    ):
        prompt_embeds, pooled_prompt_embeds, attn_bias = self._encode_prompt(prompt)
        if encode_null:
            B, L, hidden_dim = prompt_embeds.shape
            pooled_dim = pooled_prompt_embeds.shape[1]

            null_embeds, null_pooled_embeds, null_attn_bias = self._encode_prompt(null_prompt)
            
            null_embeds = null_embeds[:, :L].expand(B, L, hidden_dim).to(prompt_embeds.device)
            null_pooled_embeds = null_pooled_embeds.expand(B, pooled_dim).to(pooled_prompt_embeds.device)
            null_attn_bias = null_attn_bias[:, :L].expand(B, L).to(attn_bias.device)

            prompt_embeds = torch.cat([prompt_embeds, null_embeds], dim=0)
            pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, null_pooled_embeds], dim=0)
            attn_bias = torch.cat([attn_bias, null_attn_bias], dim=0)

        return prompt_embeds, pooled_prompt_embeds, attn_bias

    @torch.inference_mode()
    def __call__(
        self,
        prompt: str | list[str],
        null_prompt: str = "",
        seed: int | None = None,
        cfg: float = 4.0,
        top_k: int = 400,
        top_p: float = 0.95,
        more_smooth: bool = False,
        return_pil: bool = True,
        smooth_start_si: int = 0,
        turn_off_cfg_start_si: int = 10,
        turn_on_cfg_start_si: int = 0,
        image_size: tuple[int, int] = (512, 512),
        last_scale_temp: None | float = None,
    ) -> torch.Tensor | list[PILImage]:
        """
        only used for inference, on autoregressive mode
        :param prompt: text prompt to generate an image
        :param null_prompt: negative prompt for CFG
        :param seed: random seed
        :param cfg: classifier-free guidance ratio
        :param top_k: top-k sampling
        :param top_p: top-p sampling
        :param more_smooth: sampling using gumbel softmax; only used in visualization, not used in FID/IS benchmarking
        :return: if return_pil: list of PIL Images, else: torch.tensor (B, 3, H, W) in [0, 1]
        """
        assert not self.switti.training
        switti = self.switti
        vae = self.vae
        vae_quant = self.vae.quantize
        if seed is None:
            rng = None
        else:
            switti.rng.manual_seed(seed)
            rng = switti.rng

        context, cond_vector, context_attn_bias = self.encode_prompt(prompt, null_prompt)

        B = context.shape[0] // 2

        cond_vector = switti.text_pooler(cond_vector)

        if switti.use_crop_cond:
            crop_coords = get_crop_condition(2 * B * [image_size[0]],
                                             2 * B * [image_size[1]],
                                             ).to(cond_vector.device)
            crop_embed = switti.crop_embed(crop_coords.view(-1)).reshape(2 * B, switti.D)
            crop_cond = switti.crop_proj(crop_embed)
        else:
            crop_cond = None

        sos = cond_BD = cond_vector

        lvl_pos = switti.lvl_embed(switti.lvl_1L)
        if not switti.rope:
            lvl_pos += switti.pos_1LC
        next_token_map = (
            sos.unsqueeze(1)
            + switti.pos_start.expand(2 * B, switti.first_l, -1)
            + lvl_pos[:, : switti.first_l]
        )
        cur_L = 0
        f_hat = sos.new_zeros(B, switti.Cvae, switti.patch_nums[-1], switti.patch_nums[-1])

        for b in switti.blocks:
            b.attn.kv_caching(switti.use_ar) # Use KV caching if switti is in the AR mode 
            b.cross_attn.kv_caching(True)

        for si, pn in enumerate(switti.patch_nums):  # si: i-th segment
            ratio = si / switti.num_stages_minus_1
            x_BLC = next_token_map

            if switti.rope:
                freqs_cis = switti.freqs_cis[:, cur_L : cur_L + pn * pn]
            else:
                freqs_cis = switti.freqs_cis

            if si < turn_on_cfg_start_si or si >= turn_off_cfg_start_si:
                apply_smooth = False
                x_BLC = x_BLC[:B]
                context = context[:B]
                context_attn_bias = context_attn_bias[:B]
                freqs_cis = freqs_cis[:B]
                cond_BD = cond_BD[:B]
                if crop_cond is not None:
                    crop_cond = crop_cond[:B]
                for b in switti.blocks:
                    if b.attn.caching and b.attn.cached_k is not None:
                        b.attn.cached_k = b.attn.cached_k[:B]
                        b.attn.cached_v = b.attn.cached_v[:B]
                    if b.cross_attn.caching  and b.cross_attn.cached_k is not None:
                        b.cross_attn.cached_k = b.cross_attn.cached_k[:B]
                        b.cross_attn.cached_v = b.cross_attn.cached_v[:B]
            else:
                apply_smooth = more_smooth

            for block in switti.blocks:
                x_BLC = block(
                    x=x_BLC,
                    cond_BD=cond_BD,
                    attn_bias=None,
                    context=context,
                    context_attn_bias=context_attn_bias,
                    freqs_cis=freqs_cis,
                    crop_cond=crop_cond,
                )
            cur_L += pn * pn

            logits_BlV = switti.get_logits(x_BLC, cond_BD)

            # Guidance
            if si < turn_on_cfg_start_si:
                t = 0 # no guidance
            elif si >= turn_on_cfg_start_si and si < turn_off_cfg_start_si:
                # default const cfg
                t = cfg
                logits_BlV = (1 + t) * logits_BlV[:B] - t * logits_BlV[B:]
            elif last_scale_temp is not None:
                logits_BlV = logits_BlV / last_scale_temp

            if apply_smooth and si >= smooth_start_si:
                # not used when evaluating FID/IS/Precision/Recall
                gum_t = max(0.27 * (1 - ratio * 0.95), 0.005)  # refer to mask-git
                idx_Bl = gumbel_softmax_with_rng(
                    logits_BlV.mul(1 + ratio), tau=gum_t, hard=False, dim=-1, rng=rng,
                )
                h_BChw = idx_Bl @ vae_quant.embedding.weight.unsqueeze(0)
            else:
                # defaul nucleus sampling
                idx_Bl = sample_with_top_k_top_p_(
                    logits_BlV, rng=rng, top_k=top_k, top_p=top_p, num_samples=1,
                )[:, :, 0]
                h_BChw = vae_quant.embedding(idx_Bl)

            h_BChw = h_BChw.transpose_(1, 2).reshape(B, switti.Cvae, pn, pn)
            f_hat, next_token_map = vae_quant.get_next_autoregressive_input(
                    si, len(switti.patch_nums), f_hat, h_BChw,
            )
            if si != switti.num_stages_minus_1:  # prepare for next stage
                next_token_map = next_token_map.view(B, switti.Cvae, -1).transpose(1, 2)
                next_token_map = (
                    switti.word_embed(next_token_map)
                    + lvl_pos[:, cur_L : cur_L + switti.patch_nums[si + 1] ** 2]
                )
                # double the batch sizes due to CFG
                next_token_map = next_token_map.repeat(2, 1, 1)

        for b in switti.blocks:
            b.attn.kv_caching(False)
            b.cross_attn.kv_caching(False)

        # de-normalize, from [-1, 1] to [0, 1]
        img = vae.fhat_to_img(f_hat).add(1).mul(0.5)
        if return_pil:
            img = self.to_image(img)

        return img