File size: 5,267 Bytes
3d50a9a
 
 
 
55ca09f
 
3d50a9a
 
 
55ca09f
3d50a9a
 
55ca09f
3d50a9a
 
 
 
55ca09f
3d50a9a
 
55ca09f
 
 
 
 
 
 
 
 
1e17711
b5f551b
3d50a9a
 
 
 
 
1e17711
 
 
3d50a9a
 
55ca09f
 
 
 
 
 
 
1e17711
55ca09f
b925a10
55ca09f
3d50a9a
 
 
 
77fc04f
 
6aa405b
 
3cec60c
5a8a681
 
77fc04f
3d50a9a
 
 
 
 
 
 
 
 
 
55ca09f
 
3d50a9a
 
 
 
 
 
 
 
 
 
 
 
 
55ca09f
 
 
 
 
 
 
 
 
 
 
 
 
 
5a8a681
55ca09f
 
3d50a9a
 
 
 
 
55ca09f
3d50a9a
 
 
55ca09f
 
 
 
 
 
3d50a9a
55ca09f
 
 
 
 
 
3d50a9a
55ca09f
3d50a9a
55ca09f
 
 
 
 
 
 
3d50a9a
55ca09f
1e17711
55ca09f
 
3d50a9a
55ca09f
3d50a9a
1e17711
ff21b7d
1e17711
b5f551b
1e17711
 
 
feb9f84
1e17711
3d50a9a
b5f551b
3d50a9a
 
 
 
 
 
 
 
 
55ca09f
 
 
 
 
1e17711
 
3d50a9a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
import numpy as np
import random

import spaces
from models import SwittiPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "yresearch/Switti"


pipe = SwittiPipeline.from_pretrained(model_repo_id, device=device)

MAX_SEED = np.iinfo(np.int32).max


@spaces.GPU(duration=65)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    guidance_scale=4.0,
    top_k=400,
    top_p=0.95,
    more_smooth=True,
    smooth_start_si=2,
    turn_off_cfg_start_si=10,
    more_diverse=True,
    last_scale_temp=1,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    
    turn_on_cfg_start_si = 2 if more_diverse else 0

    image = pipe(
        prompt=prompt,
        null_prompt=negative_prompt,
        cfg=guidance_scale,
        top_p=top_p,
        top_k=top_k,
        more_smooth=more_smooth,
        smooth_start_si=smooth_start_si,
        turn_off_cfg_start_si=turn_off_cfg_start_si,
        turn_on_cfg_start_si=turn_on_cfg_start_si,
        seed=seed,
        last_scale_temp=last_scale_temp,
    )[0]

    return image, seed


examples = [
    "Cute winter dragon baby, kawaii, Pixar, ultra detailed, glacial background, extremely realistic.", 
    "A cosmonaut under the starry sky in a purple radiation zone against the background of huge Amanita mushrooms in the style of dark botanical",
    "A small house on a mountain top",
    "A lighthouse in a giant wave, origami style.",
    "The Mandalorian by masamune shirow, fighting stance, in the snow, cinematic lighting, intricate detail, character design",
    "Sci-fi cosmic diarama of a quasar and jellyfish in a resin cube, volumetric lighting, high resolution, hdr, sharpen, Photorealism",   
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # [Switti](https://yandex-research.github.io/switti)")
        gr.Markdown("[Learn more](https://yandex-research.github.io/switti) about Switti.")
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        seed = gr.Number(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            value=0,
        )

        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

        guidance_scale = gr.Slider(
            label="Guidance scale",
            minimum=0.0,
            maximum=10.,
            step=0.5,
            value=4.5,
        )

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            with gr.Row():
                top_k = gr.Slider(
                    label="Sampling top k",
                    minimum=10,
                    maximum=1000,
                    step=10,
                    value=400,
                )
                top_p = gr.Slider(
                    label="Sampling top p",
                    minimum=0.0,
                    maximum=1.,
                    step=0.01,
                    value=0.95,
                )
                
            with gr.Row():
                more_smooth = gr.Checkbox(label="Smoothing with Gumbel softmax sampling", value=True)
                smooth_start_si = gr.Slider(
                    label="Smoothing starting scale",
                    minimum=0,
                    maximum=10,
                    step=1,
                    value=2,
                )
                turn_off_cfg_start_si = gr.Slider(
                    label="Disable CFG starting scale",
                    minimum=0,
                    maximum=10,
                    step=1,
                    value=8,
                )
            with gr.Row():
                more_diverse = gr.Checkbox(label="More diverse", value=False)
                last_scale_temp = gr.Slider(
                    label="Temperature after disabling CFG",
                    minimum=0.1,
                    maximum=10,
                    step=0.1,
                    value=0.1,
                )

        gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)# cache_mode="lazy")
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            guidance_scale,
            top_k,
            top_p,
            more_smooth,
            smooth_start_si,
            turn_off_cfg_start_si,
            more_diverse,
            last_scale_temp,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()