Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,541 Bytes
55ca09f 94cd78d 55ca09f bfb7c0b 55ca09f 1e17711 55ca09f b5f551b 55ca09f 8b9fcd0 55ca09f fc4c596 1e17711 55ca09f e5b0112 55ca09f e5b0112 55ca09f 1e17711 55ca09f 1e17711 fc4c596 1e17711 e5b0112 55ca09f b5f551b 1e17711 55ca09f 1e17711 55ca09f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import torch
from torchvision.transforms import ToPILImage
from PIL.Image import Image as PILImage
from models.vqvae import VQVAEHF
from models.clip import FrozenCLIPEmbedder
from models.switti import SwittiHF, get_crop_condition
from models.helpers import sample_with_top_k_top_p_, gumbel_softmax_with_rng
class SwittiPipeline:
vae_path = "yresearch/VQVAE-Switti"
text_encoder_path = "openai/clip-vit-large-patch14"
text_encoder_2_path = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
def __init__(self, switti, vae, text_encoder, text_encoder_2, device,
dtype=torch.bfloat16,
):
self.switti = switti.to(dtype)
self.vae = vae.to(dtype)
self.text_encoder = text_encoder.to(dtype)
self.text_encoder_2 = text_encoder_2.to(dtype)
self.switti.eval()
self.vae.eval()
self.device = device
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, device="cuda"):
switti = SwittiHF.from_pretrained(pretrained_model_name_or_path, device=device).to(device)
vae = VQVAEHF.from_pretrained(cls.vae_path).to(device)
text_encoder = FrozenCLIPEmbedder(cls.text_encoder_path, device=device)
text_encoder_2 = FrozenCLIPEmbedder(cls.text_encoder_2_path, device=device)
return cls(switti, vae, text_encoder, text_encoder_2, device)
@staticmethod
def to_image(tensor):
return [ToPILImage()(
(255 * img.cpu().detach()).to(torch.uint8))
for img in tensor]
def _encode_prompt(self, prompt: str | list[str]):
prompt = [prompt] if isinstance(prompt, str) else prompt
encodings = [
self.text_encoder.encode(prompt),
self.text_encoder_2.encode(prompt),
]
prompt_embeds = torch.concat(
[encoding.last_hidden_state for encoding in encodings], dim=-1
)
pooled_prompt_embeds = encodings[-1].pooler_output
attn_bias = encodings[-1].attn_bias
return prompt_embeds, pooled_prompt_embeds, attn_bias
def encode_prompt(
self,
prompt: str | list[str],
null_prompt: str = "",
encode_null: bool = True,
):
prompt_embeds, pooled_prompt_embeds, attn_bias = self._encode_prompt(prompt)
if encode_null:
B, L, hidden_dim = prompt_embeds.shape
pooled_dim = pooled_prompt_embeds.shape[1]
null_embeds, null_pooled_embeds, null_attn_bias = self._encode_prompt(null_prompt)
null_embeds = null_embeds[:, :L].expand(B, L, hidden_dim).to(prompt_embeds.device)
null_pooled_embeds = null_pooled_embeds.expand(B, pooled_dim).to(pooled_prompt_embeds.device)
null_attn_bias = null_attn_bias[:, :L].expand(B, L).to(attn_bias.device)
prompt_embeds = torch.cat([prompt_embeds, null_embeds], dim=0)
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, null_pooled_embeds], dim=0)
attn_bias = torch.cat([attn_bias, null_attn_bias], dim=0)
return prompt_embeds, pooled_prompt_embeds, attn_bias
@torch.inference_mode()
def __call__(
self,
prompt: str | list[str],
null_prompt: str = "",
seed: int | None = None,
cfg: float = 4.0,
top_k: int = 400,
top_p: float = 0.95,
more_smooth: bool = False,
return_pil: bool = True,
smooth_start_si: int = 0,
turn_off_cfg_start_si: int = 10,
turn_on_cfg_start_si: int = 0,
image_size: tuple[int, int] = (512, 512),
last_scale_temp: float = 1.,
) -> torch.Tensor | list[PILImage]:
"""
only used for inference, on autoregressive mode
:param prompt: text prompt to generate an image
:param null_prompt: negative prompt for CFG
:param seed: random seed
:param cfg: classifier-free guidance ratio
:param top_k: top-k sampling
:param top_p: top-p sampling
:param more_smooth: sampling using gumbel softmax; only used in visualization, not used in FID/IS benchmarking
:return: if return_pil: list of PIL Images, else: torch.tensor (B, 3, H, W) in [0, 1]
"""
assert not self.switti.training
switti = self.switti
vae = self.vae
vae_quant = self.vae.quantize
if seed is None:
rng = None
else:
rng = torch.Generator(self.device).manual_seed(seed)
context, cond_vector, context_attn_bias = self.encode_prompt(prompt, null_prompt)
B = context.shape[0] // 2
cond_vector = switti.text_pooler(cond_vector)
if switti.use_crop_cond:
crop_coords = get_crop_condition(2 * B * [image_size[0]],
2 * B * [image_size[1]],
).to(cond_vector.device)
crop_embed = switti.crop_embed(crop_coords.view(-1)).reshape(2 * B, switti.D)
crop_cond = switti.crop_proj(crop_embed)
else:
crop_cond = None
sos = cond_BD = cond_vector
lvl_pos = switti.lvl_embed(switti.lvl_1L)
if not switti.rope:
lvl_pos += switti.pos_1LC
next_token_map = (
sos.unsqueeze(1)
+ switti.pos_start.expand(2 * B, switti.first_l, -1)
+ lvl_pos[:, : switti.first_l]
)
cur_L = 0
f_hat = sos.new_zeros(B, switti.Cvae, switti.patch_nums[-1], switti.patch_nums[-1])
for b in switti.blocks:
b.attn.kv_caching(switti.use_ar) # Use KV caching if switti is in the AR mode
b.cross_attn.kv_caching(True)
for si, pn in enumerate(switti.patch_nums): # si: i-th segment
ratio = si / switti.num_stages_minus_1
x_BLC = next_token_map
if switti.rope:
freqs_cis = switti.freqs_cis[:, cur_L : cur_L + pn * pn]
else:
freqs_cis = switti.freqs_cis
if si >= turn_off_cfg_start_si:
apply_smooth = False
x_BLC = x_BLC[:B]
context = context[:B]
context_attn_bias = context_attn_bias[:B]
freqs_cis = freqs_cis[:B]
cond_BD = cond_BD[:B]
if crop_cond is not None:
crop_cond = crop_cond[:B]
for b in switti.blocks:
if b.attn.caching and b.attn.cached_k is not None:
b.attn.cached_k = b.attn.cached_k[:B]
b.attn.cached_v = b.attn.cached_v[:B]
if b.cross_attn.caching and b.cross_attn.cached_k is not None:
b.cross_attn.cached_k = b.cross_attn.cached_k[:B]
b.cross_attn.cached_v = b.cross_attn.cached_v[:B]
else:
apply_smooth = more_smooth
for block in switti.blocks:
x_BLC = block(
x=x_BLC,
cond_BD=cond_BD,
attn_bias=None,
context=context,
context_attn_bias=context_attn_bias,
freqs_cis=freqs_cis,
crop_cond=crop_cond,
)
cur_L += pn * pn
logits_BlV = switti.get_logits(x_BLC, cond_BD)
# Guidance
if si < turn_on_cfg_start_si:
# t = 0, i. e. no guidance
logits_BlV = logits_BlV[:B]
elif si >= turn_on_cfg_start_si and si < turn_off_cfg_start_si:
# default const cfg
t = cfg
logits_BlV = (1 + t) * logits_BlV[:B] - t * logits_BlV[B:]
else:
logits_BlV = logits_BlV / last_scale_temp
if apply_smooth and si >= smooth_start_si:
# not used when evaluating FID/IS/Precision/Recall
gum_t = max(0.27 * (1 - ratio * 0.95), 0.005) # refer to mask-git
idx_Bl = gumbel_softmax_with_rng(
logits_BlV.mul(1 + ratio), tau=gum_t, hard=False, dim=-1, rng=rng,
)
h_BChw = idx_Bl @ vae_quant.embedding.weight.unsqueeze(0)
else:
# defaul nucleus sampling
idx_Bl = sample_with_top_k_top_p_(
logits_BlV, rng=rng, top_k=top_k, top_p=top_p, num_samples=1,
)[:, :, 0]
h_BChw = vae_quant.embedding(idx_Bl)
h_BChw = h_BChw.transpose_(1, 2).reshape(B, switti.Cvae, pn, pn)
f_hat, next_token_map = vae_quant.get_next_autoregressive_input(
si, len(switti.patch_nums), f_hat, h_BChw,
)
if si != switti.num_stages_minus_1: # prepare for next stage
next_token_map = next_token_map.view(B, switti.Cvae, -1).transpose(1, 2)
next_token_map = (
switti.word_embed(next_token_map)
+ lvl_pos[:, cur_L : cur_L + switti.patch_nums[si + 1] ** 2]
)
# double the batch sizes due to CFG
next_token_map = next_token_map.repeat(2, 1, 1)
for b in switti.blocks:
b.attn.kv_caching(False)
b.cross_attn.kv_caching(False)
# de-normalize, from [-1, 1] to [0, 1]
img = vae.fhat_to_img(f_hat).add(1).mul(0.5)
if return_pil:
img = self.to_image(img)
return img
|