Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from typing import List, Optional, Sequence, Tuple, Union | |
import numpy as np | |
import torch | |
from torch import distributed as tdist | |
from torch import nn as nn | |
from torch.nn import functional as F | |
# this file only provides the VectorQuantizer2 used in VQVAE | |
__all__ = ["VectorQuantizer2"] | |
class VectorQuantizer2(nn.Module): | |
# VQGAN originally use beta=1.0, never tried 0.25; SD seems using 0.25 | |
def __init__( | |
self, | |
vocab_size, | |
Cvae, | |
using_znorm, | |
beta: float = 0.25, | |
default_qresi_counts=0, | |
v_patch_nums=None, | |
quant_resi=0.5, | |
share_quant_resi=4, # share_quant_resi: args.qsr | |
): | |
super().__init__() | |
self.vocab_size: int = vocab_size | |
self.Cvae: int = Cvae | |
self.using_znorm: bool = using_znorm | |
self.v_patch_nums: Tuple[int] = v_patch_nums | |
self.quant_resi_ratio = quant_resi | |
if share_quant_resi == 0: # non-shared: \phi_{1 to K} for K scales | |
self.quant_resi = PhiNonShared( | |
[ | |
(Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity()) | |
for _ in range(default_qresi_counts or len(self.v_patch_nums)) | |
] | |
) | |
elif share_quant_resi == 1: # fully shared: only a single \phi for K scales | |
self.quant_resi = PhiShared( | |
Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity() | |
) | |
else: # partially shared: \phi_{1 to share_quant_resi} for K scales | |
self.quant_resi = PhiPartiallyShared( | |
nn.ModuleList([( | |
Phi(Cvae, quant_resi) | |
if abs(quant_resi) > 1e-6 | |
else nn.Identity() | |
) for _ in range(share_quant_resi)]) | |
) | |
self.register_buffer( | |
"ema_vocab_hit_SV", | |
torch.full((len(self.v_patch_nums), self.vocab_size), fill_value=0.0), | |
) | |
self.record_hit = 0 | |
self.beta: float = beta | |
self.embedding = nn.Embedding(self.vocab_size, self.Cvae) | |
def eini(self, eini): | |
if eini > 0: | |
nn.init.trunc_normal_(self.embedding.weight.data, std=eini) | |
elif eini < 0: | |
self.embedding.weight.data.uniform_( | |
-abs(eini) / self.vocab_size, abs(eini) / self.vocab_size | |
) | |
def extra_repr(self) -> str: | |
return f"{self.v_patch_nums}, znorm={self.using_znorm}, beta={self.beta} | S={len(self.v_patch_nums)}, quant_resi={self.quant_resi_ratio}" | |
# ===================== `forward` is only used in VAE training ===================== | |
def forward( | |
self, f_BChw: torch.Tensor, ret_usages=False | |
) -> Tuple[torch.Tensor, List[float], torch.Tensor]: | |
dtype = f_BChw.dtype | |
if dtype != torch.float32: | |
f_BChw = f_BChw.float() | |
B, C, H, W = f_BChw.shape | |
f_no_grad = f_BChw.detach() | |
f_rest = f_no_grad.clone() | |
f_hat = torch.zeros_like(f_rest) | |
with torch.cuda.amp.autocast(enabled=False): | |
mean_vq_loss: torch.Tensor = 0.0 | |
vocab_hit_V = torch.zeros( | |
self.vocab_size, dtype=torch.float, device=f_BChw.device | |
) | |
SN = len(self.v_patch_nums) | |
for si, pn in enumerate(self.v_patch_nums): # from small to large | |
# find the nearest embedding | |
if self.using_znorm: | |
rest_NC = ( | |
F.interpolate(f_rest, size=(pn, pn), mode="area") | |
.permute(0, 2, 3, 1) | |
.reshape(-1, C) | |
if (si != SN - 1) | |
else f_rest.permute(0, 2, 3, 1).reshape(-1, C) | |
) | |
rest_NC = F.normalize(rest_NC, dim=-1) | |
idx_N = torch.argmax( | |
rest_NC @ F.normalize(self.embedding.weight.data.T, dim=0), | |
dim=1, | |
) | |
else: | |
rest_NC = ( | |
F.interpolate(f_rest, size=(pn, pn), mode="area") | |
.permute(0, 2, 3, 1) | |
.reshape(-1, C) | |
if (si != SN - 1) | |
else f_rest.permute(0, 2, 3, 1).reshape(-1, C) | |
) | |
d_no_grad = torch.sum( | |
rest_NC.square(), dim=1, keepdim=True | |
) + torch.sum( | |
self.embedding.weight.data.square(), dim=1, keepdim=False | |
) | |
d_no_grad.addmm_( | |
rest_NC, self.embedding.weight.data.T, alpha=-2, beta=1 | |
) # (B*h*w, vocab_size) | |
idx_N = torch.argmin(d_no_grad, dim=1) | |
hit_V = idx_N.bincount(minlength=self.vocab_size).float() | |
if self.training: | |
# if dist.initialized(): | |
handler = tdist.all_reduce(hit_V, async_op=True) | |
# calc loss | |
idx_Bhw = idx_N.view(B, pn, pn) | |
h_BChw = ( | |
F.interpolate( | |
self.embedding(idx_Bhw).permute(0, 3, 1, 2), | |
size=(H, W), | |
mode="bicubic", | |
).contiguous() | |
if (si != SN - 1) | |
else self.embedding(idx_Bhw).permute(0, 3, 1, 2).contiguous() | |
) | |
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) | |
f_hat = f_hat + h_BChw | |
f_rest -= h_BChw | |
if self.training: # and dist.initialized(): | |
handler.wait() | |
if self.record_hit == 0: | |
self.ema_vocab_hit_SV[si].copy_(hit_V) | |
elif self.record_hit < 100: | |
self.ema_vocab_hit_SV[si].mul_(0.9).add_(hit_V.mul(0.1)) | |
else: | |
self.ema_vocab_hit_SV[si].mul_(0.99).add_(hit_V.mul(0.01)) | |
self.record_hit += 1 | |
vocab_hit_V.add_(hit_V) | |
mean_vq_loss += F.mse_loss(f_hat.data, f_BChw).mul_(self.beta) + F.mse_loss(f_hat, f_no_grad) | |
mean_vq_loss *= 1.0 / SN | |
f_hat = (f_hat.data - f_no_grad).add_(f_BChw) | |
margin = ( | |
tdist.get_world_size() | |
* (f_BChw.numel() / f_BChw.shape[1]) | |
/ self.vocab_size | |
* 0.08 | |
) | |
# margin = pn*pn / 100 | |
if ret_usages: | |
usages = [ | |
(self.ema_vocab_hit_SV[si] >= margin).float().mean().item() * 100 | |
for si, pn in enumerate(self.v_patch_nums) | |
] | |
else: | |
usages = None | |
return f_hat, usages, mean_vq_loss | |
# ===================== `forward` is only used in VAE training ===================== | |
def embed_to_fhat( | |
self, ms_h_BChw: List[torch.Tensor], all_to_max_scale=True, last_one=False | |
) -> Union[List[torch.Tensor], torch.Tensor]: | |
ls_f_hat_BChw = [] | |
B = ms_h_BChw[0].shape[0] | |
H = W = self.v_patch_nums[-1] | |
SN = len(self.v_patch_nums) | |
if all_to_max_scale: | |
f_hat = ms_h_BChw[0].new_zeros(B, self.Cvae, H, W, dtype=torch.float32) | |
for si, pn in enumerate(self.v_patch_nums): # from small to large | |
h_BChw = ms_h_BChw[si] | |
if si < len(self.v_patch_nums) - 1: | |
h_BChw = F.interpolate(h_BChw, size=(H, W), mode="bicubic") | |
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) | |
f_hat.add_(h_BChw) | |
if last_one: | |
ls_f_hat_BChw = f_hat | |
else: | |
ls_f_hat_BChw.append(f_hat.clone()) | |
else: | |
# WARNING: this is not the case in VQ-VAE training or inference (we'll interpolate every token map to the max H W, like above) | |
# WARNING: this should only be used for experimental purpose | |
f_hat = ms_h_BChw[0].new_zeros( | |
B, | |
self.Cvae, | |
self.v_patch_nums[0], | |
self.v_patch_nums[0], | |
dtype=torch.float32, | |
) | |
for si, pn in enumerate(self.v_patch_nums): # from small to large | |
f_hat = F.interpolate(f_hat, size=(pn, pn), mode="bicubic") | |
h_BChw = self.quant_resi[si / (SN - 1)](ms_h_BChw[si]) | |
f_hat.add_(h_BChw) | |
if last_one: | |
ls_f_hat_BChw = f_hat | |
else: | |
ls_f_hat_BChw.append(f_hat) | |
return ls_f_hat_BChw | |
def f_to_idxBl_or_fhat( | |
self, | |
f_BChw: torch.Tensor, | |
to_fhat: bool, | |
v_patch_nums: Optional[Sequence[Union[int, Tuple[int, int]]]] = None, | |
noise_std: Optional[float] = None, | |
) -> List[Union[torch.Tensor, torch.LongTensor]]: # z_BChw is the feature from inp_img_no_grad | |
B, C, H, W = f_BChw.shape | |
f_no_grad = f_BChw.detach() | |
f_rest = f_no_grad.clone() | |
f_hat = torch.zeros_like(f_rest) | |
f_hat_or_idx_Bl: List[torch.Tensor] = [] | |
patch_hws = [ | |
(pn, pn) if isinstance(pn, int) else (pn[0], pn[1]) | |
for pn in (v_patch_nums or self.v_patch_nums) | |
] # from small to large | |
assert ( | |
patch_hws[-1][0] == H and patch_hws[-1][1] == W | |
), f"{patch_hws[-1]=} != ({H=}, {W=})" | |
SN = len(patch_hws) | |
for si, (ph, pw) in enumerate(patch_hws): # from small to large | |
# find the nearest embedding | |
z_NC = ( | |
F.interpolate(f_rest, size=(ph, pw), mode="area") | |
.permute(0, 2, 3, 1) | |
.reshape(-1, C) | |
if (si != SN - 1) | |
else f_rest.permute(0, 2, 3, 1).reshape(-1, C) | |
) | |
if noise_std is not None: | |
z_NC = math.sqrt(1 - noise_std ** 2) * z_NC + torch.randn_like(z_NC) * noise_std | |
if self.using_znorm: | |
z_NC = F.normalize(z_NC, dim=-1) | |
idx_N = torch.argmax( | |
z_NC @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1 | |
) | |
else: | |
d_no_grad = torch.sum(z_NC.square(), dim=1, keepdim=True) + torch.sum( | |
self.embedding.weight.data.square(), dim=1, keepdim=False | |
) | |
d_no_grad.addmm_( | |
z_NC, self.embedding.weight.data.T, alpha=-2, beta=1 | |
) # (B*h*w, vocab_size) | |
idx_N = torch.argmin(d_no_grad, dim=1) | |
idx_Bhw = idx_N.view(B, ph, pw) | |
h_BChw = ( | |
F.interpolate( | |
self.embedding(idx_Bhw).permute(0, 3, 1, 2), | |
size=(H, W), | |
mode="bicubic", | |
).contiguous() | |
if (si != SN - 1) | |
else self.embedding(idx_Bhw).permute(0, 3, 1, 2).contiguous() | |
) | |
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) | |
f_hat.add_(h_BChw) | |
f_rest.sub_(h_BChw) | |
f_hat_or_idx_Bl.append( | |
f_hat.clone() if to_fhat else idx_N.reshape(B, ph * pw) | |
) | |
return f_hat_or_idx_Bl | |
# ===================== idxBl_to_switti_input: only used in Switti training, for getting teacher-forcing input ===================== | |
def idxBl_to_switti_input(self, gt_ms_idx_Bl: List[torch.Tensor]) -> torch.Tensor: | |
next_scales = [] | |
B = gt_ms_idx_Bl[0].shape[0] | |
C = self.Cvae | |
H = W = self.v_patch_nums[-1] | |
SN = len(self.v_patch_nums) | |
f_hat = gt_ms_idx_Bl[0].new_zeros(B, C, H, W, dtype=torch.float32) | |
pn_next: int = self.v_patch_nums[0] | |
for si in range(SN - 1): | |
h_BChw = F.interpolate( | |
self.embedding(gt_ms_idx_Bl[si]) | |
.transpose_(1, 2) | |
.view(B, C, pn_next, pn_next), | |
size=(H, W), | |
mode="bicubic", | |
) | |
f_hat.add_(self.quant_resi[si / (SN - 1)](h_BChw)) | |
pn_next = self.v_patch_nums[si + 1] | |
next_scales.append( | |
F.interpolate(f_hat, size=(pn_next, pn_next), mode="area") | |
.view(B, C, -1) | |
.transpose(1, 2) | |
) | |
# cat BlCs to BLC, this should be float32 | |
return torch.cat(next_scales, dim=1) if len(next_scales) else None | |
# ===================== get_next_autoregressive_input: only used in Switti inference, for getting next step's input ===================== | |
def get_next_autoregressive_input( | |
self, si: int, SN: int, f_hat: torch.Tensor, h_BChw: torch.Tensor | |
) -> Tuple[Optional[torch.Tensor], torch.Tensor]: # only used in Switti inference | |
HW = self.v_patch_nums[-1] | |
if si != SN - 1: | |
h = self.quant_resi[si / (SN - 1)]( | |
F.interpolate(h_BChw, size=(HW, HW), mode="bicubic") | |
) # conv after upsample | |
f_hat.add_(h) | |
return f_hat, F.interpolate( | |
f_hat, | |
size=(self.v_patch_nums[si + 1], self.v_patch_nums[si + 1]), | |
mode="area", | |
) | |
else: | |
h = self.quant_resi[si / (SN - 1)](h_BChw) | |
f_hat.add_(h) | |
return f_hat, f_hat | |
class Phi(nn.Conv2d): | |
def __init__(self, embed_dim, quant_resi): | |
ks = 3 | |
super().__init__( | |
in_channels=embed_dim, | |
out_channels=embed_dim, | |
kernel_size=ks, | |
stride=1, | |
padding=ks // 2, | |
) | |
self.resi_ratio = abs(quant_resi) | |
def forward(self, h_BChw): | |
return h_BChw.mul(1 - self.resi_ratio) + super().forward(h_BChw).mul_( | |
self.resi_ratio | |
) | |
class PhiShared(nn.Module): | |
def __init__(self, qresi: Phi): | |
super().__init__() | |
self.qresi: Phi = qresi | |
def __getitem__(self, _) -> Phi: | |
return self.qresi | |
class PhiPartiallyShared(nn.Module): | |
def __init__(self, qresi_ls: nn.ModuleList): | |
super().__init__() | |
self.qresi_ls = qresi_ls | |
K = len(qresi_ls) | |
self.ticks = ( | |
np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K) | |
if K == 4 | |
else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K) | |
) | |
def __getitem__(self, at_from_0_to_1: float) -> Phi: | |
return self.qresi_ls[np.argmin(np.abs(self.ticks - at_from_0_to_1)).item()] | |
def extra_repr(self) -> str: | |
return f"ticks={self.ticks}" | |
class PhiNonShared(nn.ModuleList): | |
def __init__(self, qresi: List): | |
super().__init__(qresi) | |
# self.qresi = qresi | |
K = len(qresi) | |
self.ticks = ( | |
np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K) | |
if K == 4 | |
else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K) | |
) | |
def __getitem__(self, at_from_0_to_1: float) -> Phi: | |
return super().__getitem__( | |
np.argmin(np.abs(self.ticks - at_from_0_to_1)).item() | |
) | |
def extra_repr(self) -> str: | |
return f"ticks={self.ticks}" |