import math from typing import List, Optional, Sequence, Tuple, Union import numpy as np import torch from torch import distributed as tdist from torch import nn as nn from torch.nn import functional as F # this file only provides the VectorQuantizer2 used in VQVAE __all__ = ["VectorQuantizer2"] class VectorQuantizer2(nn.Module): # VQGAN originally use beta=1.0, never tried 0.25; SD seems using 0.25 def __init__( self, vocab_size, Cvae, using_znorm, beta: float = 0.25, default_qresi_counts=0, v_patch_nums=None, quant_resi=0.5, share_quant_resi=4, # share_quant_resi: args.qsr ): super().__init__() self.vocab_size: int = vocab_size self.Cvae: int = Cvae self.using_znorm: bool = using_znorm self.v_patch_nums: Tuple[int] = v_patch_nums self.quant_resi_ratio = quant_resi if share_quant_resi == 0: # non-shared: \phi_{1 to K} for K scales self.quant_resi = PhiNonShared( [ (Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity()) for _ in range(default_qresi_counts or len(self.v_patch_nums)) ] ) elif share_quant_resi == 1: # fully shared: only a single \phi for K scales self.quant_resi = PhiShared( Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity() ) else: # partially shared: \phi_{1 to share_quant_resi} for K scales self.quant_resi = PhiPartiallyShared( nn.ModuleList([( Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity() ) for _ in range(share_quant_resi)]) ) self.register_buffer( "ema_vocab_hit_SV", torch.full((len(self.v_patch_nums), self.vocab_size), fill_value=0.0), ) self.record_hit = 0 self.beta: float = beta self.embedding = nn.Embedding(self.vocab_size, self.Cvae) def eini(self, eini): if eini > 0: nn.init.trunc_normal_(self.embedding.weight.data, std=eini) elif eini < 0: self.embedding.weight.data.uniform_( -abs(eini) / self.vocab_size, abs(eini) / self.vocab_size ) def extra_repr(self) -> str: return f"{self.v_patch_nums}, znorm={self.using_znorm}, beta={self.beta} | S={len(self.v_patch_nums)}, quant_resi={self.quant_resi_ratio}" # ===================== `forward` is only used in VAE training ===================== def forward( self, f_BChw: torch.Tensor, ret_usages=False ) -> Tuple[torch.Tensor, List[float], torch.Tensor]: dtype = f_BChw.dtype if dtype != torch.float32: f_BChw = f_BChw.float() B, C, H, W = f_BChw.shape f_no_grad = f_BChw.detach() f_rest = f_no_grad.clone() f_hat = torch.zeros_like(f_rest) with torch.cuda.amp.autocast(enabled=False): mean_vq_loss: torch.Tensor = 0.0 vocab_hit_V = torch.zeros( self.vocab_size, dtype=torch.float, device=f_BChw.device ) SN = len(self.v_patch_nums) for si, pn in enumerate(self.v_patch_nums): # from small to large # find the nearest embedding if self.using_znorm: rest_NC = ( F.interpolate(f_rest, size=(pn, pn), mode="area") .permute(0, 2, 3, 1) .reshape(-1, C) if (si != SN - 1) else f_rest.permute(0, 2, 3, 1).reshape(-1, C) ) rest_NC = F.normalize(rest_NC, dim=-1) idx_N = torch.argmax( rest_NC @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1, ) else: rest_NC = ( F.interpolate(f_rest, size=(pn, pn), mode="area") .permute(0, 2, 3, 1) .reshape(-1, C) if (si != SN - 1) else f_rest.permute(0, 2, 3, 1).reshape(-1, C) ) d_no_grad = torch.sum( rest_NC.square(), dim=1, keepdim=True ) + torch.sum( self.embedding.weight.data.square(), dim=1, keepdim=False ) d_no_grad.addmm_( rest_NC, self.embedding.weight.data.T, alpha=-2, beta=1 ) # (B*h*w, vocab_size) idx_N = torch.argmin(d_no_grad, dim=1) hit_V = idx_N.bincount(minlength=self.vocab_size).float() if self.training: # if dist.initialized(): handler = tdist.all_reduce(hit_V, async_op=True) # calc loss idx_Bhw = idx_N.view(B, pn, pn) h_BChw = ( F.interpolate( self.embedding(idx_Bhw).permute(0, 3, 1, 2), size=(H, W), mode="bicubic", ).contiguous() if (si != SN - 1) else self.embedding(idx_Bhw).permute(0, 3, 1, 2).contiguous() ) h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) f_hat = f_hat + h_BChw f_rest -= h_BChw if self.training: # and dist.initialized(): handler.wait() if self.record_hit == 0: self.ema_vocab_hit_SV[si].copy_(hit_V) elif self.record_hit < 100: self.ema_vocab_hit_SV[si].mul_(0.9).add_(hit_V.mul(0.1)) else: self.ema_vocab_hit_SV[si].mul_(0.99).add_(hit_V.mul(0.01)) self.record_hit += 1 vocab_hit_V.add_(hit_V) mean_vq_loss += F.mse_loss(f_hat.data, f_BChw).mul_(self.beta) + F.mse_loss(f_hat, f_no_grad) mean_vq_loss *= 1.0 / SN f_hat = (f_hat.data - f_no_grad).add_(f_BChw) margin = ( tdist.get_world_size() * (f_BChw.numel() / f_BChw.shape[1]) / self.vocab_size * 0.08 ) # margin = pn*pn / 100 if ret_usages: usages = [ (self.ema_vocab_hit_SV[si] >= margin).float().mean().item() * 100 for si, pn in enumerate(self.v_patch_nums) ] else: usages = None return f_hat, usages, mean_vq_loss # ===================== `forward` is only used in VAE training ===================== def embed_to_fhat( self, ms_h_BChw: List[torch.Tensor], all_to_max_scale=True, last_one=False ) -> Union[List[torch.Tensor], torch.Tensor]: ls_f_hat_BChw = [] B = ms_h_BChw[0].shape[0] H = W = self.v_patch_nums[-1] SN = len(self.v_patch_nums) if all_to_max_scale: f_hat = ms_h_BChw[0].new_zeros(B, self.Cvae, H, W, dtype=torch.float32) for si, pn in enumerate(self.v_patch_nums): # from small to large h_BChw = ms_h_BChw[si] if si < len(self.v_patch_nums) - 1: h_BChw = F.interpolate(h_BChw, size=(H, W), mode="bicubic") h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) f_hat.add_(h_BChw) if last_one: ls_f_hat_BChw = f_hat else: ls_f_hat_BChw.append(f_hat.clone()) else: # WARNING: this is not the case in VQ-VAE training or inference (we'll interpolate every token map to the max H W, like above) # WARNING: this should only be used for experimental purpose f_hat = ms_h_BChw[0].new_zeros( B, self.Cvae, self.v_patch_nums[0], self.v_patch_nums[0], dtype=torch.float32, ) for si, pn in enumerate(self.v_patch_nums): # from small to large f_hat = F.interpolate(f_hat, size=(pn, pn), mode="bicubic") h_BChw = self.quant_resi[si / (SN - 1)](ms_h_BChw[si]) f_hat.add_(h_BChw) if last_one: ls_f_hat_BChw = f_hat else: ls_f_hat_BChw.append(f_hat) return ls_f_hat_BChw def f_to_idxBl_or_fhat( self, f_BChw: torch.Tensor, to_fhat: bool, v_patch_nums: Optional[Sequence[Union[int, Tuple[int, int]]]] = None, noise_std: Optional[float] = None, ) -> List[Union[torch.Tensor, torch.LongTensor]]: # z_BChw is the feature from inp_img_no_grad B, C, H, W = f_BChw.shape f_no_grad = f_BChw.detach() f_rest = f_no_grad.clone() f_hat = torch.zeros_like(f_rest) f_hat_or_idx_Bl: List[torch.Tensor] = [] patch_hws = [ (pn, pn) if isinstance(pn, int) else (pn[0], pn[1]) for pn in (v_patch_nums or self.v_patch_nums) ] # from small to large assert ( patch_hws[-1][0] == H and patch_hws[-1][1] == W ), f"{patch_hws[-1]=} != ({H=}, {W=})" SN = len(patch_hws) for si, (ph, pw) in enumerate(patch_hws): # from small to large # find the nearest embedding z_NC = ( F.interpolate(f_rest, size=(ph, pw), mode="area") .permute(0, 2, 3, 1) .reshape(-1, C) if (si != SN - 1) else f_rest.permute(0, 2, 3, 1).reshape(-1, C) ) if noise_std is not None: z_NC = math.sqrt(1 - noise_std ** 2) * z_NC + torch.randn_like(z_NC) * noise_std if self.using_znorm: z_NC = F.normalize(z_NC, dim=-1) idx_N = torch.argmax( z_NC @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1 ) else: d_no_grad = torch.sum(z_NC.square(), dim=1, keepdim=True) + torch.sum( self.embedding.weight.data.square(), dim=1, keepdim=False ) d_no_grad.addmm_( z_NC, self.embedding.weight.data.T, alpha=-2, beta=1 ) # (B*h*w, vocab_size) idx_N = torch.argmin(d_no_grad, dim=1) idx_Bhw = idx_N.view(B, ph, pw) h_BChw = ( F.interpolate( self.embedding(idx_Bhw).permute(0, 3, 1, 2), size=(H, W), mode="bicubic", ).contiguous() if (si != SN - 1) else self.embedding(idx_Bhw).permute(0, 3, 1, 2).contiguous() ) h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) f_hat.add_(h_BChw) f_rest.sub_(h_BChw) f_hat_or_idx_Bl.append( f_hat.clone() if to_fhat else idx_N.reshape(B, ph * pw) ) return f_hat_or_idx_Bl # ===================== idxBl_to_switti_input: only used in Switti training, for getting teacher-forcing input ===================== def idxBl_to_switti_input(self, gt_ms_idx_Bl: List[torch.Tensor]) -> torch.Tensor: next_scales = [] B = gt_ms_idx_Bl[0].shape[0] C = self.Cvae H = W = self.v_patch_nums[-1] SN = len(self.v_patch_nums) f_hat = gt_ms_idx_Bl[0].new_zeros(B, C, H, W, dtype=torch.float32) pn_next: int = self.v_patch_nums[0] for si in range(SN - 1): h_BChw = F.interpolate( self.embedding(gt_ms_idx_Bl[si]) .transpose_(1, 2) .view(B, C, pn_next, pn_next), size=(H, W), mode="bicubic", ) f_hat.add_(self.quant_resi[si / (SN - 1)](h_BChw)) pn_next = self.v_patch_nums[si + 1] next_scales.append( F.interpolate(f_hat, size=(pn_next, pn_next), mode="area") .view(B, C, -1) .transpose(1, 2) ) # cat BlCs to BLC, this should be float32 return torch.cat(next_scales, dim=1) if len(next_scales) else None # ===================== get_next_autoregressive_input: only used in Switti inference, for getting next step's input ===================== def get_next_autoregressive_input( self, si: int, SN: int, f_hat: torch.Tensor, h_BChw: torch.Tensor ) -> Tuple[Optional[torch.Tensor], torch.Tensor]: # only used in Switti inference HW = self.v_patch_nums[-1] if si != SN - 1: h = self.quant_resi[si / (SN - 1)]( F.interpolate(h_BChw, size=(HW, HW), mode="bicubic") ) # conv after upsample f_hat.add_(h) return f_hat, F.interpolate( f_hat, size=(self.v_patch_nums[si + 1], self.v_patch_nums[si + 1]), mode="area", ) else: h = self.quant_resi[si / (SN - 1)](h_BChw) f_hat.add_(h) return f_hat, f_hat class Phi(nn.Conv2d): def __init__(self, embed_dim, quant_resi): ks = 3 super().__init__( in_channels=embed_dim, out_channels=embed_dim, kernel_size=ks, stride=1, padding=ks // 2, ) self.resi_ratio = abs(quant_resi) def forward(self, h_BChw): return h_BChw.mul(1 - self.resi_ratio) + super().forward(h_BChw).mul_( self.resi_ratio ) class PhiShared(nn.Module): def __init__(self, qresi: Phi): super().__init__() self.qresi: Phi = qresi def __getitem__(self, _) -> Phi: return self.qresi class PhiPartiallyShared(nn.Module): def __init__(self, qresi_ls: nn.ModuleList): super().__init__() self.qresi_ls = qresi_ls K = len(qresi_ls) self.ticks = ( np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K) if K == 4 else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K) ) def __getitem__(self, at_from_0_to_1: float) -> Phi: return self.qresi_ls[np.argmin(np.abs(self.ticks - at_from_0_to_1)).item()] def extra_repr(self) -> str: return f"ticks={self.ticks}" class PhiNonShared(nn.ModuleList): def __init__(self, qresi: List): super().__init__(qresi) # self.qresi = qresi K = len(qresi) self.ticks = ( np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K) if K == 4 else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K) ) def __getitem__(self, at_from_0_to_1: float) -> Phi: return super().__getitem__( np.argmin(np.abs(self.ticks - at_from_0_to_1)).item() ) def extra_repr(self) -> str: return f"ticks={self.ticks}"