import gradio as gr import numpy as np import random import spaces from models import SwittiPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "yresearch/Switti" pipe = SwittiPipeline.from_pretrained(model_repo_id, device=device) MAX_SEED = np.iinfo(np.int32).max @spaces.GPU(duration=65) def infer( prompt, negative_prompt="", seed=42, randomize_seed=False, guidance_scale=4.0, top_k=400, top_p=0.95, more_smooth=True, smooth_start_si=2, turn_off_cfg_start_si=10, more_diverse=True, apply_late_temperature=False, last_scale_temp=None, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) turn_on_cfg_start_si = 2 if more_diverse else 0 image = pipe( prompt=prompt, null_prompt=negative_prompt, cfg=guidance_scale, top_p=top_p, top_k=top_k, more_smooth=more_smooth, smooth_start_si=smooth_start_si, turn_off_cfg_start_si=turn_off_cfg_start_si, turn_on_cfg_start_si=turn_on_cfg_start_si, seed=seed, apply_late_temperature=apply_late_temperature, last_scale_temp=last_scale_temp, )[0] return image, seed examples = ["Cute winter dragon baby, kawaii, Pixar, ultra detailed, glacial background, extremely realistic."] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # [Switti](https://yandex-research.github.io/switti)") gr.Markdown("[Learn more](https://yandex-research.github.io/switti) about Switti.") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) seed = gr.Number( label="Seed", minimum=0, maximum=MAX_SEED, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10., step=0.5, value=4., ) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) with gr.Row(): top_k = gr.Slider( label="Sampling top k", minimum=10, maximum=1000, step=10, value=400, ) top_p = gr.Slider( label="Sampling top p", minimum=0.0, maximum=1., step=0.01, value=0.95, ) with gr.Row(): more_smooth = gr.Checkbox(label="Smoothing with Gumbel softmax sampling", value=True) smooth_start_si = gr.Slider( label="Smoothing starting scale", minimum=0, maximum=10, step=1, value=2, ) turn_off_cfg_start_si = gr.Slider( label="Disable CFG starting scale", minimum=0, maximum=10, step=1, value=8, ) with gr.Row(): more_diverse = gr.Checkbox(label="More diverse", value=True) apply_late_temperature = gr.Checkbox(label="Temperature after disabling CFG", value=False) last_scale_temp = gr.Slider( label="Late temperature value", minimum=0.1, maximum=10, step=0.1, value=0.1, ) gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True)# cache_mode="lazy") gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, guidance_scale, top_k, top_p, more_smooth, smooth_start_si, turn_off_cfg_start_si, more_diverse, apply_late_temperature, last_scale_temp, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()