Spaces:
Runtime error
Runtime error
MorenoLQ
commited on
Commit
•
7fce27b
1
Parent(s):
856bef6
Updated for file upload and missing inputs
Browse files- app.py +66 -45
- demo_example_1.mp3 +0 -0
- gradio_queue.db +0 -0
app.py
CHANGED
@@ -25,61 +25,78 @@ DICT_MODELS = {
|
|
25 |
MODELS = sorted(DICT_MODELS.keys())
|
26 |
CACHED_MODELS_BY_ID = {}
|
27 |
|
28 |
-
def
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
34 |
model = DICT_MODELS.get(model_name)
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
"error_message": f"Model size {model_size} not found for {language} language :("
|
39 |
-
})
|
40 |
-
elif decoding_type == "Guided by Language Model" and not model["has_lm"]:
|
41 |
history.append({
|
42 |
-
"
|
|
|
|
|
|
|
43 |
})
|
44 |
else:
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
if model_instance is None:
|
49 |
-
model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
50 |
-
CACHED_MODELS_BY_ID[model["model_id"]] = model_instance
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
else:
|
57 |
-
processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
|
58 |
-
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
59 |
-
feature_extractor=processor.feature_extractor, decoder=None)
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
"model_id": model["model_id"],
|
67 |
-
"decoding_type": decoding_type,
|
68 |
-
"transcription": transcription,
|
69 |
-
"error_message": None
|
70 |
-
})
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
html_output += "</div>"
|
83 |
|
84 |
return html_output, history
|
85 |
|
@@ -87,7 +104,8 @@ def run(input_file, model_name, decoding_type, history):
|
|
87 |
gr.Interface(
|
88 |
run,
|
89 |
inputs=[
|
90 |
-
gr.inputs.Audio(source="
|
|
|
91 |
gr.inputs.Radio(label="Model", choices=MODELS),
|
92 |
gr.inputs.Radio(label="Decoding type", choices=["Standard", "Guided by Language Model"]),
|
93 |
"state"
|
@@ -106,5 +124,8 @@ gr.Interface(
|
|
106 |
""",
|
107 |
allow_screenshot=False,
|
108 |
allow_flagging="never",
|
109 |
-
theme="huggingface"
|
|
|
|
|
|
|
110 |
).launch(enable_queue=True)
|
|
|
25 |
MODELS = sorted(DICT_MODELS.keys())
|
26 |
CACHED_MODELS_BY_ID = {}
|
27 |
|
28 |
+
def build_html(history):
|
29 |
+
html_output = "<div class='result'>"
|
30 |
+
for item in history:
|
31 |
+
if item["error_message"] is not None:
|
32 |
+
html_output += f"<div class='result_item result_item_error'>{item['error_message']}</div>"
|
33 |
+
else:
|
34 |
+
url_suffix = " + Guided by Language Model" if item["decoding_type"] == "Guided by Language Model" else ""
|
35 |
+
html_output += "<div class='result_item result_item_success'>"
|
36 |
+
html_output += f'<strong><a target="_blank" href="https://huggingface.co/{item["model_id"]}">{item["model_id"]}{url_suffix}</a></strong><br/><br/>'
|
37 |
+
html_output += f'{item["transcription"]}<br/>'
|
38 |
+
html_output += "</div>"
|
39 |
+
html_output += "</div>"
|
40 |
+
return html_output
|
41 |
|
42 |
+
def run(uploaded_file, input_file, model_name, decoding_type, history):
|
43 |
+
|
44 |
model = DICT_MODELS.get(model_name)
|
45 |
+
history = history or []
|
46 |
+
|
47 |
+
if uploaded_file is None and input_file is None:
|
|
|
|
|
|
|
48 |
history.append({
|
49 |
+
"model_id": model["model_id"],
|
50 |
+
"decoding_type": decoding_type,
|
51 |
+
"transcription": "",
|
52 |
+
"error_message": "No input provided."
|
53 |
})
|
54 |
else:
|
55 |
|
56 |
+
if input_file is None:
|
57 |
+
input_file = uploaded_file
|
|
|
|
|
|
|
58 |
|
59 |
+
logger.info(f"Running ASR {model_name}-{decoding_type} for {input_file}")
|
60 |
+
|
61 |
+
history = history or []
|
62 |
+
|
63 |
+
if model is None:
|
64 |
+
history.append({
|
65 |
+
"error_message": f"Model size {model_size} not found for {language} language :("
|
66 |
+
})
|
67 |
+
elif decoding_type == "Guided by Language Model" and not model["has_lm"]:
|
68 |
+
history.append({
|
69 |
+
"error_message": f"LM not available for {language} language :("
|
70 |
+
})
|
71 |
else:
|
|
|
|
|
|
|
72 |
|
73 |
+
# model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
74 |
+
model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None)
|
75 |
+
if model_instance is None:
|
76 |
+
model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
77 |
+
CACHED_MODELS_BY_ID[model["model_id"]] = model_instance
|
78 |
|
79 |
+
if decoding_type == "Guided by Language Model":
|
80 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"])
|
81 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
82 |
+
feature_extractor=processor.feature_extractor, decoder=processor.decoder)
|
83 |
+
else:
|
84 |
+
processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
|
85 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
86 |
+
feature_extractor=processor.feature_extractor, decoder=None)
|
87 |
|
88 |
+
transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"]
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
logger.info(f"Transcription for {input_file}: {transcription}")
|
91 |
+
|
92 |
+
history.append({
|
93 |
+
"model_id": model["model_id"],
|
94 |
+
"decoding_type": decoding_type,
|
95 |
+
"transcription": transcription,
|
96 |
+
"error_message": None
|
97 |
+
})
|
98 |
+
|
99 |
+
html_output = build_html(history)
|
|
|
100 |
|
101 |
return html_output, history
|
102 |
|
|
|
104 |
gr.Interface(
|
105 |
run,
|
106 |
inputs=[
|
107 |
+
gr.inputs.Audio(source="upload", type='filepath', optional=True),
|
108 |
+
gr.inputs.Audio(source="microphone", type="filepath", label="Record something...", optional=True),
|
109 |
gr.inputs.Radio(label="Model", choices=MODELS),
|
110 |
gr.inputs.Radio(label="Decoding type", choices=["Standard", "Guided by Language Model"]),
|
111 |
"state"
|
|
|
124 |
""",
|
125 |
allow_screenshot=False,
|
126 |
allow_flagging="never",
|
127 |
+
theme="huggingface",
|
128 |
+
examples = [
|
129 |
+
['demo_example_1.mp3', 'demo_example_1.mp3', 'robust-300m', 'Guided by Language Model']
|
130 |
+
]
|
131 |
).launch(enable_queue=True)
|
demo_example_1.mp3
ADDED
Binary file (121 kB). View file
|
|
gradio_queue.db
CHANGED
Binary files a/gradio_queue.db and b/gradio_queue.db differ
|
|