import nibabel as nib import numpy as np from nibabel.processing import resample_to_output from skimage.measure import marching_cubes def load_to_numpy(data_path): if type(data_path) is not str: data_path = data_path.name image = nib.load(data_path) resampled = resample_to_output(image, None, order=0) data = resampled.get_fdata() data = np.rot90(data, k=1, axes=(0, 1)) # @TODO. Contrast-operation to do based on MRI/CT and target to segment # data[data < -150] = -150 # data[data > 250] = 250 data = data - np.amin(data) data = data / np.amax(data) * 255 data = data.astype("uint8") print(data.shape) return [data[..., i] for i in range(data.shape[-1])] def load_pred_volume_to_numpy(data_path): if type(data_path) is not str: data_path = data_path.name image = nib.load(data_path) resampled = resample_to_output(image, None, order=0) data = resampled.get_fdata() data = np.rot90(data, k=1, axes=(0, 1)) data[data > 0] = 1 data = data.astype("uint8") print(data.shape) return [data[..., i] for i in range(data.shape[-1])] def nifti_to_glb(path, output="prediction.obj"): # load NIFTI into numpy array image = nib.load(path) resampled = resample_to_output(image, [1, 1, 1], order=1) data = resampled.get_fdata().astype("uint8") # extract surface verts, faces, normals, values = marching_cubes(data, 0) faces += 1 with open(output, "w") as thefile: for item in verts: thefile.write("v {0} {1} {2}\n".format(item[0], item[1], item[2])) for item in normals: thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2])) for item in faces: thefile.write( "f {0}//{0} {1}//{1} {2}//{2}\n".format( item[0], item[1], item[2] ) )