File size: 4,310 Bytes
edfeb78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057d18
edfeb78
 
 
 
1057d18
edfeb78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057d18
edfeb78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d37f373
edfeb78
 
 
d37f373
edfeb78
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from typing import List, AsyncIterator
import os

from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.messages import MultiModalMessage
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_core import Image as AGImage
from autogen_core.tools import FunctionTool
from autogen_ext.models.openai import OpenAIChatCompletionClient
from dotenv import load_dotenv, find_dotenv
from PIL import Image
import yaml

from tools import Tools

class Minerva:
    """
    AI Guardian for Scam Protection using an Agentic Workflow
    """

    def __init__(self, config_path: str = "config/agents.yaml"):
        """
        Initialize Minerva with agents and tools
        """
        self.load_environment()
        self.model = self.initialize_model()
        self.config = self.load_config(config_path)
        self.tools = Tools()
        self.agents = self.create_agents()
        self.team = self.create_team()

    def load_environment(self):
        """Load environment variables"""
        load_dotenv(find_dotenv())

    def load_config(self, config_path: str) -> dict:
        """Load agent configurations from YAML file"""
        with open(config_path, 'r') as file:
            return yaml.safe_load(file)

    def initialize_model(self) -> OpenAIChatCompletionClient:
        """Initialize OpenAI model"""
        return OpenAIChatCompletionClient(
            model="gpt-4o",
            api_key=os.getenv("OPENAI_API_KEY")
        )

    def create_agents(self) -> List[AssistantAgent]:
        """Create all required agents with their specialized roles and tools"""
        
        ocr_tool = FunctionTool(
            self.tools.ocr,
            description="Extracts text from an image path"
        )
        url_checker_tool = FunctionTool(
            self.tools.is_url_safe,
            description="Checks if a URL is safe"
        )

        agents = []
        
        agents.append(AssistantAgent(
            name="OCR_Specialist",
            description="Extracts text from an image",
            system_message=self.config['ocr_agent']['assignment'],
            model_client=self.model,
            #tools=[ocr_tool] # Default OCR to GPT-4o vision capabilities. Uncomment to OCR with tool calling (requires pytesseract)
        ))

        agents.append(AssistantAgent(
            name="URL_Checker",
            description="Checks if a URL is safe",
            system_message=self.config['url_checker_agent']['assignment'],
            model_client=self.model,
            tools=[url_checker_tool]
        ))

        agents.append(AssistantAgent(
            name="Content_Analyst",
            description="Analyzes the text for scam patterns",
            system_message=self.config['content_agent']['assignment'],
            model_client=self.model,
            tools=[url_checker_tool]
        ))

        agents.append(AssistantAgent(
            name="Decision_Maker",
            description="Synthesizes the analyses and make final determination",
            system_message=self.config['decision_agent']['assignment'],
            model_client=self.model
        ))

        agents.append(AssistantAgent(
            name="Summary_Agent",
            description="Generate a summary of the final determination",
            system_message=self.config['summary_agent']['assignment'],
            model_client=self.model
        ))

        agents.append(AssistantAgent(
            name="Language_Translation_Agent",
            description="Translate the summary to the user language",
            system_message=self.config['language_translation_agent']['assignment'],
            model_client=self.model
        ))

        return agents
    
    def create_team(self) -> RoundRobinGroupChat:
        """Create a team of agents that work together in Round Robin fashion"""
        return RoundRobinGroupChat(
            self.agents,
            max_turns=6
        )
    
    def reset(self):
        """Reset team state"""
        self.team.reset()

    async def analyze(self, image: Image) -> AsyncIterator:
        """
        Analyze an image for potential scams.
        """
        img = AGImage(image)
        mm_message = MultiModalMessage(content=[img], source="User")

        return self.team.run_stream(task=mm_message)