from PIL import Image
import gradio as gr
from minerva import Minerva
from formatter import AutoGenFormatter
title = "Minerva: LLM Agents for Scam Protection"
description = """
🦉 Minerva uses LLM Agents to analyze screenshots for potential scams.
📢 It provides the analysis in the language of the extracted text.
📄 Try out one of the examples to perform a scam analysis.
⚙️ The Agentic Workflow is streamed for demonstration purposes.
🕵 LLM Agents coordinated as an AutoGen Team in a RoundRobin fashion:
- *OCR Specialist*
- *Link Checker*
- *Content Analyst*
- *Decision Maker*
- *Summary Specialist*
- *Language Translation Specialist*
🧑💻️ https://github.com/dcarpintero/minerva
🎓 Submission for RBI Berkeley, CS294/194-196, LLM Agents (Diego Carpintero)
♥️ Built with AutoGen 0.4.0 and OpenAI.
"""
inputs = gr.components.Image()
outputs = [
gr.components.Textbox(label="Analysis Result"),
gr.HTML(label="Agentic Workflow (Streaming)")
]
examples = "examples"
example_labels = ["EN:Gift:Social", "ES:Banking:Social", "EN:Billing:SMS", "EN:Multifactor:Email", "EN:CustomerService:Twitter", "00:Landscape.HAM"]
model = Minerva()
formatter = AutoGenFormatter()
def to_html(texts):
formatted_html = ''
for text in texts:
formatted_html += text.replace('\n', '
') + '
'
return f'
{formatted_html}' async def predict(img): try: img = Image.fromarray(img) stream = await model.analyze(img) streams = [] messages = [] async for s in stream: streams.append(s) messages.append(await formatter.to_output(s)) yield ["Pondering, stand by...", to_html(messages)] if streams[-1]: prediction = streams[-1].messages[-1].content else: prediction = "No analysis available. Try again later." await model.reset() yield [prediction, to_html(messages)] except Exception as e: print(e) yield ["Error during analysis. Try again later.", ""] with gr.Blocks() as demo: with gr.Tab("Minerva: AI Guardian for Scam Protection"): with gr.Row(): gr.Interface( fn=predict, inputs=inputs, outputs=outputs, examples=examples, example_labels=example_labels, description=description, ).queue(default_concurrency_limit=5) demo.launch()