Spaces:
Sleeping
Sleeping
Diego Carpintero
commited on
Commit
•
31cd6a1
1
Parent(s):
aeb5dd0
add model
Browse files- model.py +62 -0
- model/digit_classifier.pt +2 -2
model.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
5 |
+
|
6 |
+
|
7 |
+
class Linear(nn.Module):
|
8 |
+
def __init__(self, in_features: int, out_features: int):
|
9 |
+
super(Linear, self).__init__()
|
10 |
+
self.in_features = in_features
|
11 |
+
self.out_features = out_features
|
12 |
+
|
13 |
+
self.weight = nn.Parameter(
|
14 |
+
(
|
15 |
+
torch.randn((self.in_features, self.out_features), device=device) * 0.1
|
16 |
+
).requires_grad_()
|
17 |
+
)
|
18 |
+
self.bias = nn.Parameter(
|
19 |
+
(torch.randn(self.out_features, device=device) * 0.1).requires_grad_()
|
20 |
+
)
|
21 |
+
|
22 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
23 |
+
return x @ self.weight + self.bias
|
24 |
+
|
25 |
+
|
26 |
+
class ReLU(nn.Module):
|
27 |
+
@staticmethod
|
28 |
+
def forward(x: torch.Tensor) -> torch.Tensor:
|
29 |
+
return torch.max(x, torch.tensor(0))
|
30 |
+
|
31 |
+
|
32 |
+
class Sequential(nn.Module):
|
33 |
+
def __init__(self, *layers):
|
34 |
+
super(Sequential, self).__init__()
|
35 |
+
self.layers = nn.ModuleList(layers)
|
36 |
+
|
37 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
38 |
+
for layer in self.layers:
|
39 |
+
x = layer(x)
|
40 |
+
return x
|
41 |
+
|
42 |
+
|
43 |
+
class Flatten(nn.Module):
|
44 |
+
@staticmethod
|
45 |
+
def forward(x: torch.Tensor) -> torch.Tensor:
|
46 |
+
return x.view(x.size(0), -1)
|
47 |
+
|
48 |
+
|
49 |
+
class DigitClassifier(nn.Module):
|
50 |
+
def __init__(self):
|
51 |
+
super(DigitClassifier, self).__init__()
|
52 |
+
self.main = Sequential(
|
53 |
+
Flatten(),
|
54 |
+
Linear(in_features=784, out_features=256),
|
55 |
+
ReLU(),
|
56 |
+
Linear(in_features=256, out_features=64),
|
57 |
+
ReLU(),
|
58 |
+
Linear(in_features=64, out_features=10),
|
59 |
+
)
|
60 |
+
|
61 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
62 |
+
return self.main(x)
|
model/digit_classifier.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0d2908a8b36b225cc6cb6eef0f8ef5fbcb660ef79a13b93c27df22082115a48
|
3 |
+
size 875543
|