depthanyvideo
update
4be2365
raw
history blame
6.17 kB
import gradio as gr
import logging
import os
import random
import tempfile
import time
import spaces
from easydict import EasyDict
import numpy as np
import torch
from dav.pipelines import DAVPipeline
from dav.models import UNetSpatioTemporalRopeConditionModel
from diffusers import AutoencoderKLTemporalDecoder, FlowMatchEulerDiscreteScheduler
from dav.utils import img_utils
def seed_all(seed: int = 0):
"""
Set random seeds for reproducibility.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Initialize logging
logging.basicConfig(level=logging.INFO)
# Load models once to avoid reloading on every inference
def load_models(model_base, device):
vae = AutoencoderKLTemporalDecoder.from_pretrained(model_base, subfolder="vae")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
model_base, subfolder="scheduler"
)
unet = UNetSpatioTemporalRopeConditionModel.from_pretrained(
model_base, subfolder="unet"
)
unet_interp = UNetSpatioTemporalRopeConditionModel.from_pretrained(
model_base, subfolder="unet_interp"
)
pipe = DAVPipeline(
vae=vae,
unet=unet,
unet_interp=unet_interp,
scheduler=scheduler,
)
pipe = pipe.to(device)
return pipe
# Load models at startup
MODEL_BASE = "hhyangcs/depth-any-video"
DEVICE_TYPE = "cuda"
DEVICE = torch.device(DEVICE_TYPE)
pipe = load_models(MODEL_BASE, DEVICE)
@spaces.GPU(duration=140)
def depth_any_video(
file,
denoise_steps=3,
num_frames=32,
decode_chunk_size=16,
num_interp_frames=16,
num_overlap_frames=6,
max_resolution=1024,
):
"""
Perform depth estimation on the uploaded video/image.
"""
with tempfile.TemporaryDirectory() as tmp_dir:
# Save the uploaded file
input_path = os.path.join(tmp_dir, file.name)
with open(input_path, "wb") as f:
f.write(file.read())
# Set up output directory
output_dir = os.path.join(tmp_dir, "output")
os.makedirs(output_dir, exist_ok=True)
# Prepare configuration
cfg = EasyDict(
{
"model_base": MODEL_BASE,
"data_path": input_path,
"output_dir": output_dir,
"denoise_steps": denoise_steps,
"num_frames": num_frames,
"decode_chunk_size": decode_chunk_size,
"num_interp_frames": num_interp_frames,
"num_overlap_frames": num_overlap_frames,
"max_resolution": max_resolution,
"seed": 666,
}
)
seed_all(cfg.seed)
file_name = os.path.splitext(os.path.basename(cfg.data_path))[0]
is_video = cfg.data_path.lower().endswith((".mp4", ".avi", ".mov", ".mkv"))
if is_video:
num_interp_frames = cfg.num_interp_frames
num_overlap_frames = cfg.num_overlap_frames
num_frames = cfg.num_frames
assert num_frames % 2 == 0, "num_frames should be even."
assert (
2 <= num_overlap_frames <= (num_interp_frames + 2 + 1) // 2
), "Invalid frame overlap."
max_frames = (num_interp_frames + 2 - num_overlap_frames) * (
num_frames // 2
)
image, fps = img_utils.read_video(cfg.data_path, max_frames=max_frames)
else:
image = img_utils.read_image(cfg.data_path)
image = img_utils.imresize_max(image, cfg.max_resolution)
image = img_utils.imcrop_multi(image)
image_tensor = np.ascontiguousarray(
[_img.transpose(2, 0, 1) / 255.0 for _img in image]
)
image_tensor = torch.from_numpy(image_tensor).to(DEVICE)
with torch.no_grad(), torch.autocast(
device_type=DEVICE_TYPE, dtype=torch.float16
):
pipe_out = pipe(
image_tensor,
num_frames=cfg.num_frames,
num_overlap_frames=cfg.num_overlap_frames,
num_interp_frames=cfg.num_interp_frames,
decode_chunk_size=cfg.decode_chunk_size,
num_inference_steps=cfg.denoise_steps,
)
disparity = pipe_out.disparity
disparity_colored = pipe_out.disparity_colored
image = pipe_out.image
# (N, H, 2 * W, 3)
merged = np.concatenate(
[
image,
disparity_colored,
],
axis=2,
)
if is_video:
output_path = os.path.join(cfg.output_dir, f"{file_name}_depth.mp4")
img_utils.write_video(
output_path,
merged,
fps,
)
return output_path
else:
output_path = os.path.join(cfg.output_dir, f"{file_name}_depth.png")
img_utils.write_image(
output_path,
merged[0],
)
return output_path
# Define Gradio interface
title = "Depth Any Video with Scalable Synthetic Data"
description = """
Upload a video or image to perform depth estimation using the Depth Any Video model.
Adjust the parameters as needed to control the inference process.
"""
iface = gr.Interface(
fn=depth_any_video,
inputs=[
gr.File(label="Upload Video/Image"),
gr.Slider(1, 10, step=1, value=3, label="Denoise Steps"),
gr.Slider(16, 64, step=1, value=32, label="Number of Frames"),
gr.Slider(8, 32, step=1, value=16, label="Decode Chunk Size"),
gr.Slider(8, 32, step=1, value=16, label="Number of Interpolation Frames"),
gr.Slider(2, 10, step=1, value=6, label="Number of Overlap Frames"),
gr.Slider(512, 2048, step=32, value=1024, label="Maximum Resolution"),
],
outputs=gr.Video(label="Depth Enhanced Video/Image"),
title=title,
description=description,
examples=[["demos/arch_2.jpg"], ["demos/wooly_mammoth.mp4"]],
allow_flagging="never",
analytics_enabled=False,
)
if __name__ == "__main__":
iface.launch(share=True)