solo-depth-any-video / dav /models /unets /unet_3d_rope_blocks.py
depthanyvideo
update
e9f3e75
raw
history blame
23.7 kB
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
from diffusers.utils import is_torch_version, logging
from ..resnet import (
Downsample2D,
SpatioTemporalResBlock,
Upsample2D,
)
from ..transformers.transformer_temporal_rope import TransformerSpatioTemporalModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def get_down_block(
down_block_type: str,
num_layers: int,
in_channels: int,
out_channels: int,
temb_channels: int,
add_downsample: bool,
resnet_eps: float,
resnet_act_fn: str,
num_attention_heads: int,
resnet_groups: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
downsample_padding: Optional[int] = None,
dual_cross_attention: bool = False,
use_linear_projection: bool = True,
only_cross_attention: bool = False,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
temporal_num_attention_heads: int = 8,
temporal_max_seq_length: int = 32,
transformer_layers_per_block: int = 1,
) -> Union[
"DownBlockSpatioTemporal",
"CrossAttnDownBlockSpatioTemporal",
]:
if down_block_type == "DownBlockSpatioTemporal":
# added for SDV
return DownBlockSpatioTemporal(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
add_downsample=add_downsample,
)
elif down_block_type == "CrossAttnDownBlockSpatioTemporal":
# added for SDV
if cross_attention_dim is None:
raise ValueError(
"cross_attention_dim must be specified for CrossAttnDownBlockSpatioTemporal"
)
return CrossAttnDownBlockSpatioTemporal(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
num_layers=num_layers,
transformer_layers_per_block=transformer_layers_per_block,
add_downsample=add_downsample,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads,
)
raise ValueError(f"{down_block_type} does not exist.")
def get_up_block(
up_block_type: str,
num_layers: int,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
add_upsample: bool,
resnet_eps: float,
resnet_act_fn: str,
num_attention_heads: int,
resolution_idx: Optional[int] = None,
resnet_groups: Optional[int] = None,
cross_attention_dim: Optional[int] = None,
dual_cross_attention: bool = False,
use_linear_projection: bool = True,
only_cross_attention: bool = False,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
temporal_num_attention_heads: int = 8,
temporal_cross_attention_dim: Optional[int] = None,
temporal_max_seq_length: int = 32,
transformer_layers_per_block: int = 1,
dropout: float = 0.0,
) -> Union[
"UpBlockSpatioTemporal",
"CrossAttnUpBlockSpatioTemporal",
]:
if up_block_type == "UpBlockSpatioTemporal":
# added for SDV
return UpBlockSpatioTemporal(
num_layers=num_layers,
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
resolution_idx=resolution_idx,
add_upsample=add_upsample,
)
elif up_block_type == "CrossAttnUpBlockSpatioTemporal":
# added for SDV
if cross_attention_dim is None:
raise ValueError(
"cross_attention_dim must be specified for CrossAttnUpBlockSpatioTemporal"
)
return CrossAttnUpBlockSpatioTemporal(
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
temb_channels=temb_channels,
num_layers=num_layers,
transformer_layers_per_block=transformer_layers_per_block,
add_upsample=add_upsample,
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads,
resolution_idx=resolution_idx,
)
raise ValueError(f"{up_block_type} does not exist.")
class UNetMidBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
):
super().__init__()
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
# support for variable transformer layers per block
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
# there is always at least one resnet
resnets = [
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=1e-5,
)
]
attentions = []
for i in range(num_layers):
attentions.append(
TransformerSpatioTemporalModel(
num_attention_heads,
in_channels // num_attention_heads,
in_channels=in_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
)
)
resnets.append(
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=1e-5,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
hidden_states = self.resnets[0](
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
if self.training and self.gradient_checkpointing: # TODO
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
position_ids=position_ids,
)[0]
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**ckpt_kwargs,
)
else:
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
position_ids=position_ids,
)[0]
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
return hidden_states
class DownBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
num_layers: int = 1,
add_downsample: bool = True,
):
super().__init__()
resnets = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=1e-5,
)
)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
position_ids=None,
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
output_states = ()
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
)
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
class CrossAttnDownBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
temb_channels: int,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
add_downsample: bool = True,
):
super().__init__()
resnets = []
attentions = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=1e-6,
)
)
attentions.append(
TransformerSpatioTemporalModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels,
use_conv=True,
out_channels=out_channels,
padding=1,
name="op",
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.FloatTensor,
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
position_ids=None,
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
output_states = ()
blocks = list(zip(self.resnets, self.attentions))
for resnet, attn in blocks:
if self.training and self.gradient_checkpointing: # TODO
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**ckpt_kwargs,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
position_ids=position_ids,
)[0]
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
position_ids=position_ids,
)[0]
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
class UpBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
prev_output_channel: int,
out_channels: int,
temb_channels: int,
resolution_idx: Optional[int] = None,
num_layers: int = 1,
resnet_eps: float = 1e-6,
add_upsample: bool = True,
):
super().__init__()
resnets = []
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
)
)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList(
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
)
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
upsample_size: Optional[int] = None,
image_only_indicator: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
for resnet in self.resnets:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
)
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
class CrossAttnUpBlockSpatioTemporal(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
temb_channels: int,
resolution_idx: Optional[int] = None,
num_layers: int = 1,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
resnet_eps: float = 1e-6,
num_attention_heads: int = 1,
cross_attention_dim: int = 1280,
add_upsample: bool = True,
):
super().__init__()
resnets = []
attentions = []
self.has_cross_attention = True
self.num_attention_heads = num_attention_heads
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
resnets.append(
SpatioTemporalResBlock(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
)
)
attentions.append(
TransformerSpatioTemporalModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList(
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
)
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
def forward(
self,
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
upsample_size: Optional[int] = None,
position_ids=None,
) -> torch.FloatTensor:
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing: # TODO
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**ckpt_kwargs,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
position_ids=position_ids,
)[0]
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
position_ids=position_ids,
)[0]
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states