Spaces:
Sleeping
Sleeping
from functools import partial | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.utils import deprecate | |
from diffusers.models.activations import get_activation | |
from diffusers.models.attention_processor import SpatialNorm | |
from diffusers.models.downsampling import ( # noqa | |
Downsample2D, | |
downsample_2d, | |
) | |
from diffusers.models.normalization import AdaGroupNorm | |
from diffusers.models.upsampling import ( # noqa | |
Upsample2D, | |
upsample_2d, | |
) | |
class ResnetBlock2D(nn.Module): | |
r""" | |
A Resnet block. | |
Parameters: | |
in_channels (`int`): The number of channels in the input. | |
out_channels (`int`, *optional*, default to be `None`): | |
The number of output channels for the first conv2d layer. If None, same as `in_channels`. | |
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. | |
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. | |
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. | |
groups_out (`int`, *optional*, default to None): | |
The number of groups to use for the second normalization layer. if set to None, same as `groups`. | |
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. | |
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. | |
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. | |
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" | |
for a stronger conditioning with scale and shift. | |
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see | |
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. | |
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. | |
use_in_shortcut (`bool`, *optional*, default to `True`): | |
If `True`, add a 1x1 nn.conv2d layer for skip-connection. | |
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. | |
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. | |
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the | |
`conv_shortcut` output. | |
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. | |
If None, same as `out_channels`. | |
""" | |
def __init__( | |
self, | |
*, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
conv_shortcut: bool = False, | |
dropout: float = 0.0, | |
temb_channels: int = 512, | |
groups: int = 32, | |
groups_out: Optional[int] = None, | |
pre_norm: bool = True, | |
eps: float = 1e-6, | |
non_linearity: str = "swish", | |
skip_time_act: bool = False, | |
time_embedding_norm: str = "default", # default, scale_shift, | |
kernel: Optional[torch.FloatTensor] = None, | |
output_scale_factor: float = 1.0, | |
use_in_shortcut: Optional[bool] = None, | |
up: bool = False, | |
down: bool = False, | |
conv_shortcut_bias: bool = True, | |
conv_2d_out_channels: Optional[int] = None, | |
): | |
super().__init__() | |
if time_embedding_norm == "ada_group": | |
raise ValueError( | |
"This class cannot be used with `time_embedding_norm==ada_group`, please use `ResnetBlockCondNorm2D` instead", | |
) | |
if time_embedding_norm == "spatial": | |
raise ValueError( | |
"This class cannot be used with `time_embedding_norm==spatial`, please use `ResnetBlockCondNorm2D` instead", | |
) | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.up = up | |
self.down = down | |
self.output_scale_factor = output_scale_factor | |
self.time_embedding_norm = time_embedding_norm | |
self.skip_time_act = skip_time_act | |
linear_cls = nn.Linear | |
conv_cls = nn.Conv2d | |
if groups_out is None: | |
groups_out = groups | |
self.norm1 = torch.nn.GroupNorm( | |
num_groups=groups, num_channels=in_channels, eps=eps, affine=True | |
) | |
self.conv1 = conv_cls( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if temb_channels is not None: | |
if self.time_embedding_norm == "default": | |
self.time_emb_proj = linear_cls(temb_channels, out_channels) | |
elif self.time_embedding_norm == "scale_shift": | |
self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels) | |
else: | |
raise ValueError( | |
f"unknown time_embedding_norm : {self.time_embedding_norm} " | |
) | |
else: | |
self.time_emb_proj = None | |
self.norm2 = torch.nn.GroupNorm( | |
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True | |
) | |
self.dropout = torch.nn.Dropout(dropout) | |
conv_2d_out_channels = conv_2d_out_channels or out_channels | |
self.conv2 = conv_cls( | |
out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
self.nonlinearity = get_activation(non_linearity) | |
self.upsample = self.downsample = None | |
if self.up: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") | |
else: | |
self.upsample = Upsample2D(in_channels, use_conv=False) | |
elif self.down: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) | |
else: | |
self.downsample = Downsample2D( | |
in_channels, use_conv=False, padding=1, name="op" | |
) | |
self.use_in_shortcut = ( | |
self.in_channels != conv_2d_out_channels | |
if use_in_shortcut is None | |
else use_in_shortcut | |
) | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = conv_cls( | |
in_channels, | |
conv_2d_out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=conv_shortcut_bias, | |
) | |
def forward( | |
self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor, *args, **kwargs | |
) -> torch.FloatTensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
if self.upsample is not None: | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
input_tensor = input_tensor.contiguous() | |
hidden_states = hidden_states.contiguous() | |
input_tensor = self.upsample(input_tensor) | |
hidden_states = self.upsample(hidden_states) | |
elif self.downsample is not None: | |
input_tensor = self.downsample(input_tensor) | |
hidden_states = self.downsample(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if self.time_emb_proj is not None: | |
if not self.skip_time_act: | |
temb = self.nonlinearity(temb) | |
temb = self.time_emb_proj(temb)[:, :, None, None] | |
if self.time_embedding_norm == "default": | |
if temb is not None: | |
hidden_states = hidden_states + temb | |
hidden_states = self.norm2(hidden_states) | |
elif self.time_embedding_norm == "scale_shift": | |
if temb is None: | |
raise ValueError( | |
f" `temb` should not be None when `time_embedding_norm` is {self.time_embedding_norm}" | |
) | |
time_scale, time_shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = hidden_states * (1 + time_scale) + time_shift | |
else: | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |
class TemporalResnetBlock(nn.Module): | |
r""" | |
A Resnet block. | |
Parameters: | |
in_channels (`int`): The number of channels in the input. | |
out_channels (`int`, *optional*, default to be `None`): | |
The number of output channels for the first conv2d layer. If None, same as `in_channels`. | |
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. | |
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
temb_channels: int = 512, | |
eps: float = 1e-6, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
kernel_size = (3, 1, 1) | |
padding = [k // 2 for k in kernel_size] | |
self.norm1 = torch.nn.GroupNorm( | |
num_groups=32, num_channels=in_channels, eps=eps, affine=True | |
) | |
self.conv1 = nn.Conv3d( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=padding, | |
) | |
if temb_channels is not None: | |
self.time_emb_proj = nn.Linear(temb_channels, out_channels) | |
else: | |
self.time_emb_proj = None | |
self.norm2 = torch.nn.GroupNorm( | |
num_groups=32, num_channels=out_channels, eps=eps, affine=True | |
) | |
self.dropout = torch.nn.Dropout(0.0) | |
self.conv2 = nn.Conv3d( | |
out_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=padding, | |
) | |
self.nonlinearity = get_activation("silu") | |
self.use_in_shortcut = self.in_channels != out_channels | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = nn.Conv3d( | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
def forward( | |
self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor | |
) -> torch.FloatTensor: | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if self.time_emb_proj is not None: | |
temb = self.nonlinearity(temb) | |
temb = self.time_emb_proj(temb)[:, :, :, None, None] | |
temb = temb.permute(0, 2, 1, 3, 4) | |
hidden_states = hidden_states + temb | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = input_tensor + hidden_states | |
return output_tensor | |
# VideoResBlock | |
class SpatioTemporalResBlock(nn.Module): | |
r""" | |
A SpatioTemporal Resnet block. | |
Parameters: | |
in_channels (`int`): The number of channels in the input. | |
out_channels (`int`, *optional*, default to be `None`): | |
The number of output channels for the first conv2d layer. If None, same as `in_channels`. | |
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. | |
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the spatial resenet. | |
temporal_eps (`float`, *optional*, defaults to `eps`): The epsilon to use for the temporal resnet. | |
merge_factor (`float`, *optional*, defaults to `0.5`): The merge factor to use for the temporal mixing. | |
merge_strategy (`str`, *optional*, defaults to `learned_with_images`): | |
The merge strategy to use for the temporal mixing. | |
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`): | |
If `True`, switch the spatial and temporal mixing. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
temb_channels: int = 512, | |
eps: float = 1e-6, | |
temporal_eps: Optional[float] = None, | |
merge_factor: float = 0.5, | |
merge_strategy="learned_with_images", | |
switch_spatial_to_temporal_mix: bool = False, | |
): | |
super().__init__() | |
self.spatial_res_block = ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=eps, | |
) | |
self.temporal_res_block = TemporalResnetBlock( | |
in_channels=out_channels if out_channels is not None else in_channels, | |
out_channels=out_channels if out_channels is not None else in_channels, | |
temb_channels=temb_channels, | |
eps=temporal_eps if temporal_eps is not None else eps, | |
) | |
self.time_mixer = AlphaBlender( | |
alpha=merge_factor, | |
merge_strategy=merge_strategy, | |
switch_spatial_to_temporal_mix=switch_spatial_to_temporal_mix, | |
) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
): | |
num_frames = image_only_indicator.shape[-1] | |
hidden_states = self.spatial_res_block(hidden_states, temb) | |
batch_frames, channels, height, width = hidden_states.shape | |
batch_size = batch_frames // num_frames | |
hidden_states_mix = ( | |
hidden_states[None, :] | |
.reshape(batch_size, num_frames, channels, height, width) | |
.permute(0, 2, 1, 3, 4) | |
) | |
hidden_states = ( | |
hidden_states[None, :] | |
.reshape(batch_size, num_frames, channels, height, width) | |
.permute(0, 2, 1, 3, 4) | |
) | |
if temb is not None: | |
temb = temb.reshape(batch_size, num_frames, -1) | |
hidden_states = self.temporal_res_block(hidden_states, temb) | |
hidden_states = self.time_mixer( | |
x_spatial=hidden_states_mix, | |
x_temporal=hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape( | |
batch_frames, channels, height, width | |
) | |
return hidden_states | |
class AlphaBlender(nn.Module): | |
r""" | |
A module to blend spatial and temporal features. | |
Parameters: | |
alpha (`float`): The initial value of the blending factor. | |
merge_strategy (`str`, *optional*, defaults to `learned_with_images`): | |
The merge strategy to use for the temporal mixing. | |
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`): | |
If `True`, switch the spatial and temporal mixing. | |
""" | |
strategies = ["learned", "fixed", "learned_with_images"] | |
def __init__( | |
self, | |
alpha: float, | |
merge_strategy: str = "learned_with_images", | |
switch_spatial_to_temporal_mix: bool = False, | |
): | |
super().__init__() | |
self.merge_strategy = merge_strategy | |
self.switch_spatial_to_temporal_mix = ( | |
switch_spatial_to_temporal_mix # For TemporalVAE | |
) | |
if merge_strategy not in self.strategies: | |
raise ValueError(f"merge_strategy needs to be in {self.strategies}") | |
if self.merge_strategy == "fixed": | |
self.register_buffer("mix_factor", torch.Tensor([alpha])) | |
elif ( | |
self.merge_strategy == "learned" | |
or self.merge_strategy == "learned_with_images" | |
): | |
self.register_parameter( | |
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) | |
) | |
else: | |
raise ValueError(f"Unknown merge strategy {self.merge_strategy}") | |
def get_alpha(self, image_only_indicator: torch.Tensor, ndims: int) -> torch.Tensor: | |
if self.merge_strategy == "fixed": | |
alpha = self.mix_factor | |
elif self.merge_strategy == "learned": | |
alpha = torch.sigmoid(self.mix_factor) | |
elif self.merge_strategy == "learned_with_images": | |
if image_only_indicator is None: | |
raise ValueError( | |
"Please provide image_only_indicator to use learned_with_images merge strategy" | |
) | |
alpha = torch.where( | |
image_only_indicator.bool(), | |
torch.ones(1, 1, device=image_only_indicator.device), | |
torch.sigmoid(self.mix_factor)[..., None], | |
) | |
# (batch, channel, frames, height, width) | |
if ndims == 5: | |
alpha = alpha[:, None, :, None, None] | |
# (batch*frames, height*width, channels) | |
elif ndims == 3: | |
alpha = alpha.reshape(-1)[:, None, None] | |
else: | |
raise ValueError( | |
f"Unexpected ndims {ndims}. Dimensions should be 3 or 5" | |
) | |
else: | |
raise NotImplementedError | |
return alpha | |
def forward( | |
self, | |
x_spatial: torch.Tensor, | |
x_temporal: torch.Tensor, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
alpha = self.get_alpha(image_only_indicator, x_spatial.ndim) | |
alpha = alpha.to(x_spatial.dtype) | |
if self.switch_spatial_to_temporal_mix: | |
alpha = 1.0 - alpha | |
x = alpha * x_spatial + (1.0 - alpha) * x_temporal | |
return x | |