File size: 15,343 Bytes
e4283d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange

from audioldm.latent_diffusion.util import checkpoint


def exists(val):
    return val is not None


def uniq(arr):
    return {el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = (
            nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
            if not glu
            else GEGLU(dim, inner_dim)
        )

        self.net = nn.Sequential(
            project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
        )

    def forward(self, x):
        return self.net(x)


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def Normalize(in_channels):
    return torch.nn.GroupNorm(
        num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
    )


class LinearAttention(nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super().__init__()
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        q, k, v = rearrange(
            qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
        )
        k = k.softmax(dim=-1)
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
        out = rearrange(
            out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
        )
        return self.to_out(out)


class SpatialSelfAttention(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.k = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.v = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.proj_out = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b, c, h, w = q.shape
        q = rearrange(q, "b c h w -> b (h w) c")
        k = rearrange(k, "b c h w -> b c (h w)")
        w_ = torch.einsum("bij,bjk->bik", q, k)

        w_ = w_ * (int(c) ** (-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = rearrange(v, "b c h w -> b c (h w)")
        w_ = rearrange(w_, "b i j -> b j i")
        h_ = torch.einsum("bij,bjk->bik", v, w_)
        h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
        h_ = self.proj_out(h_)

        return x + h_


class CrossAttention(nn.Module):
    """
    ### Cross Attention Layer
    This falls-back to self-attention when conditional embeddings are not specified.
    """

    # use_flash_attention: bool = True
    use_flash_attention: bool = False

    def __init__(
        self,
        query_dim,
        context_dim=None,
        heads=8,
        dim_head=64,
        dropout=0.0,
        is_inplace: bool = True,
    ):
        # def __init__(self, d_model: int, d_cond: int, n_heads: int, d_head: int, is_inplace: bool = True):
        """
        :param d_model: is the input embedding size
        :param n_heads: is the number of attention heads
        :param d_head: is the size of a attention head
        :param d_cond: is the size of the conditional embeddings
        :param is_inplace: specifies whether to perform the attention softmax computation inplace to
            save memory
        """
        super().__init__()

        self.is_inplace = is_inplace
        self.n_heads = heads
        self.d_head = dim_head

        # Attention scaling factor
        self.scale = dim_head**-0.5

        # The normal self-attention layer
        if context_dim is None:
            context_dim = query_dim

        # Query, key and value mappings
        d_attn = dim_head * heads
        self.to_q = nn.Linear(query_dim, d_attn, bias=False)
        self.to_k = nn.Linear(context_dim, d_attn, bias=False)
        self.to_v = nn.Linear(context_dim, d_attn, bias=False)

        # Final linear layer
        self.to_out = nn.Sequential(nn.Linear(d_attn, query_dim), nn.Dropout(dropout))

        # Setup [flash attention](https://github.com/HazyResearch/flash-attention).
        # Flash attention is only used if it's installed
        # and `CrossAttention.use_flash_attention` is set to `True`.
        try:
            # You can install flash attention by cloning their Github repo,
            # [https://github.com/HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention)
            # and then running `python setup.py install`
            from flash_attn.flash_attention import FlashAttention

            self.flash = FlashAttention()
            # Set the scale for scaled dot-product attention.
            self.flash.softmax_scale = self.scale
        # Set to `None` if it's not installed
        except ImportError:
            self.flash = None

    def forward(self, x, context=None, mask=None):
        """
        :param x: are the input embeddings of shape `[batch_size, height * width, d_model]`
        :param cond: is the conditional embeddings of shape `[batch_size, n_cond, d_cond]`
        """

        # If `cond` is `None` we perform self attention
        has_cond = context is not None
        if not has_cond:
            context = x

        # Get query, key and value vectors
        q = self.to_q(x)
        k = self.to_k(context)
        v = self.to_v(context)

        # Use flash attention if it's available and the head size is less than or equal to `128`
        if (
            CrossAttention.use_flash_attention
            and self.flash is not None
            and not has_cond
            and self.d_head <= 128
        ):
            return self.flash_attention(q, k, v)
        # Otherwise, fallback to normal attention
        else:
            return self.normal_attention(q, k, v)

    def flash_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
        """
        #### Flash Attention
        :param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
        :param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
        :param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
        """

        # Get batch size and number of elements along sequence axis (`width * height`)
        batch_size, seq_len, _ = q.shape

        # Stack `q`, `k`, `v` vectors for flash attention, to get a single tensor of
        # shape `[batch_size, seq_len, 3, n_heads * d_head]`
        qkv = torch.stack((q, k, v), dim=2)
        # Split the heads
        qkv = qkv.view(batch_size, seq_len, 3, self.n_heads, self.d_head)

        # Flash attention works for head sizes `32`, `64` and `128`, so we have to pad the heads to
        # fit this size.
        if self.d_head <= 32:
            pad = 32 - self.d_head
        elif self.d_head <= 64:
            pad = 64 - self.d_head
        elif self.d_head <= 128:
            pad = 128 - self.d_head
        else:
            raise ValueError(f"Head size ${self.d_head} too large for Flash Attention")

        # Pad the heads
        if pad:
            qkv = torch.cat(
                (qkv, qkv.new_zeros(batch_size, seq_len, 3, self.n_heads, pad)), dim=-1
            )

        # Compute attention
        # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
        # This gives a tensor of shape `[batch_size, seq_len, n_heads, d_padded]`
        # TODO here I add the dtype changing
        out, _ = self.flash(qkv.type(torch.float16))
        # Truncate the extra head size
        out = out[:, :, :, : self.d_head].float()
        # Reshape to `[batch_size, seq_len, n_heads * d_head]`
        out = out.reshape(batch_size, seq_len, self.n_heads * self.d_head)

        # Map to `[batch_size, height * width, d_model]` with a linear layer
        return self.to_out(out)

    def normal_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
        """
        #### Normal Attention

        :param q: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
        :param k: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
        :param v: are the query vectors before splitting heads, of shape `[batch_size, seq, d_attn]`
        """

        # Split them to heads of shape `[batch_size, seq_len, n_heads, d_head]`
        q = q.view(*q.shape[:2], self.n_heads, -1)  # [bs, 64, 20, 32]
        k = k.view(*k.shape[:2], self.n_heads, -1)  # [bs, 1, 20, 32]
        v = v.view(*v.shape[:2], self.n_heads, -1)

        # Calculate attention $\frac{Q K^\top}{\sqrt{d_{key}}}$
        attn = torch.einsum("bihd,bjhd->bhij", q, k) * self.scale

        # Compute softmax
        # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)$$
        if self.is_inplace:
            half = attn.shape[0] // 2
            attn[half:] = attn[half:].softmax(dim=-1)
            attn[:half] = attn[:half].softmax(dim=-1)
        else:
            attn = attn.softmax(dim=-1)

        # Compute attention output
        # $$\underset{seq}{softmax}\Bigg(\frac{Q K^\top}{\sqrt{d_{key}}}\Bigg)V$$
        # attn: [bs, 20, 64, 1]
        # v: [bs, 1, 20, 32]
        out = torch.einsum("bhij,bjhd->bihd", attn, v)
        # Reshape to `[batch_size, height * width, n_heads * d_head]`
        out = out.reshape(*out.shape[:2], -1)
        # Map to `[batch_size, height * width, d_model]` with a linear layer
        return self.to_out(out)


# class CrossAttention(nn.Module):
# def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
#     super().__init__()
#     inner_dim = dim_head * heads
#     context_dim = default(context_dim, query_dim)

#     self.scale = dim_head ** -0.5
#     self.heads = heads

#     self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
#     self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
#     self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

#     self.to_out = nn.Sequential(
#         nn.Linear(inner_dim, query_dim),
#         nn.Dropout(dropout)
#     )

# def forward(self, x, context=None, mask=None):
#     h = self.heads

#     q = self.to_q(x)
#     context = default(context, x)
#     k = self.to_k(context)
#     v = self.to_v(context)

#     q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

#     sim = einsum('b i d, b j d -> b i j', q, k) * self.scale

#     if exists(mask):
#         mask = rearrange(mask, 'b ... -> b (...)')
#         max_neg_value = -torch.finfo(sim.dtype).max
#         mask = repeat(mask, 'b j -> (b h) () j', h=h)
#         sim.masked_fill_(~mask, max_neg_value)

#     # attention, what we cannot get enough of
#     attn = sim.softmax(dim=-1)

#     out = einsum('b i j, b j d -> b i d', attn, v)
#     out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
#     return self.to_out(out)


class BasicTransformerBlock(nn.Module):
    def __init__(
        self,
        dim,
        n_heads,
        d_head,
        dropout=0.0,
        context_dim=None,
        gated_ff=True,
        checkpoint=True,
    ):
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(
            query_dim=dim,
            context_dim=context_dim,
            heads=n_heads,
            dim_head=d_head,
            dropout=dropout,
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        if context is None:
            return checkpoint(self._forward, (x,), self.parameters(), self.checkpoint)
        else:
            return checkpoint(
                self._forward, (x, context), self.parameters(), self.checkpoint
            )

    def _forward(self, x, context=None):
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    """

    def __init__(
        self,
        in_channels,
        n_heads,
        d_head,
        depth=1,
        dropout=0.0,
        context_dim=None,
        no_context=False,
    ):
        super().__init__()

        if no_context:
            context_dim = None

        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = Normalize(in_channels)

        self.proj_in = nn.Conv2d(
            in_channels, inner_dim, kernel_size=1, stride=1, padding=0
        )

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim
                )
                for d in range(depth)
            ]
        )

        self.proj_out = zero_module(
            nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
        )

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        for block in self.transformer_blocks:
            x = block(x, context=context)
        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        x = self.proj_out(x)
        return x + x_in