Spaces:
Running
Running
import json | |
import requests | |
import gradio as gr | |
import random | |
import time | |
import os | |
import datetime | |
from datetime import datetime | |
from PIL import Image | |
from PIL import ImageOps | |
from PIL import Image, ImageDraw, ImageFont | |
from textwrap import wrap | |
import json | |
from io import BytesIO | |
print('for update') | |
API_TOKEN = os.getenv("API_TOKEN") | |
DECODEM_TOKEN=os.getenv("DECODEM_TOKEN") | |
from huggingface_hub import InferenceApi | |
inference = InferenceApi("bigscience/bloom",token=API_TOKEN) | |
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} | |
url_decodemprompts='https://us-central1-createinsightsproject.cloudfunctions.net/getdecodemprompts' | |
data={"prompt_type":'ad_text_prompt',"decodem_token":DECODEM_TOKEN} | |
try: | |
r = requests.post(url_decodemprompts, data=json.dumps(data), headers=headers) | |
except requests.exceptions.ReadTimeout as e: | |
print(e) | |
#print(r.content) | |
prompt_text=str(r.content, 'UTF-8') | |
print(prompt_text) | |
data={"prompt_type":'ad_image_prompt',"decodem_token":DECODEM_TOKEN} | |
try: | |
r = requests.post(url_decodemprompts, data=json.dumps(data), headers=headers) | |
except requests.exceptions.ReadTimeout as e: | |
print(e) | |
#print(r.content) | |
prompt_image=str(r.content, 'UTF-8') | |
print(prompt_image) | |
ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1" # url of your endpoint | |
#ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-1-5" # url of your endpoint | |
HF_TOKEN=API_TOKEN# token where you deployed your endpoint | |
def generate_image(prompt_SD:str): | |
payload = {"inputs": prompt_SD,} | |
headers = { | |
"Authorization": f"Bearer {HF_TOKEN}", | |
"Content-Type": "application/json", | |
"Accept": "image/png" # important to get an image back | |
} | |
response = requests.post(ENDPOINT_URL, headers=headers, json=payload) | |
print(response.content) | |
img = Image.open(BytesIO(response.content)) | |
return img | |
def infer(prompt, | |
max_length = 250, | |
top_k = 0, | |
num_beams = 0, | |
no_repeat_ngram_size = 2, | |
top_p = 0.9, | |
seed=42, | |
temperature=0.7, | |
greedy_decoding = False, | |
return_full_text = False): | |
print(seed) | |
top_k = None if top_k == 0 else top_k | |
do_sample = False if num_beams > 0 else not greedy_decoding | |
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams | |
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size | |
top_p = None if num_beams else top_p | |
early_stopping = None if num_beams is None else num_beams > 0 | |
params = { | |
"max_new_tokens": max_length, | |
"top_k": top_k, | |
"top_p": top_p, | |
"temperature": temperature, | |
"do_sample": do_sample, | |
"seed": seed, | |
"early_stopping":early_stopping, | |
"no_repeat_ngram_size":no_repeat_ngram_size, | |
"num_beams":num_beams, | |
"return_full_text":return_full_text | |
} | |
s = time.time() | |
response = inference(prompt, params=params) | |
#print(response) | |
proc_time = time.time()-s | |
#print(f"Processing time was {proc_time} seconds") | |
return response | |
def getadline(text_inp): | |
print(text_inp) | |
print(datetime.today().strftime("%d-%m-%Y")) | |
text = prompt_text+"\nInput:"+text_inp + "\nOutput:" | |
resp = infer(text,seed=random.randint(0,100)) | |
generated_text=resp[0]['generated_text'] | |
result = generated_text.replace(text,'').strip() | |
result = result.replace("Output:","") | |
parts = result.split("###") | |
topic = parts[0].strip() | |
topic="\n".join(topic.split('\n')) | |
response_nsfw = requests.get('https://github.com/coffee-and-fun/google-profanity-words/raw/main/data/list.txt') | |
data_nsfw = response_nsfw.text | |
nsfwlist=data_nsfw.split('\n') | |
nsfwlowerlist=[] | |
for each in nsfwlist: | |
if each!='': | |
nsfwlowerlist.append(each.lower()) | |
nsfwlowerlist.extend(['bra','gay','lesbian',]) | |
print(topic) | |
foundnsfw=0 | |
for each_word in nsfwlowerlist: | |
if each_word in topic.lower() or each_word in text_inp : | |
foundnsfw=1 | |
if foundnsfw==1: | |
topic="Unsafe content found. Please try again with different prompts." | |
print(topic) | |
return(topic) | |
def getadvertisement(topic): | |
input_keyword=topic | |
backdrop=['surrounded by water droplets','in front of a brick wall','in front of a wooden wall','in a white boho style studio','with nature backdrop','with water splash','laying on a wooden table',] | |
whichitem=random.randint(0,len(backdrop)-1) | |
prompt_SD='product photograph of '+input_keyword+' '+backdrop[whichitem]+prompt_image | |
# generate image | |
image = generate_image(prompt_SD) | |
# save to disk | |
image.save("generation.png") | |
# Set the font to be used | |
req = requests.get("https://github.com/openmaptiles/fonts/raw/master/roboto/Roboto-Regular.ttf") | |
FONT_USER_INFO = ImageFont.truetype(BytesIO(req.content), 75, encoding="utf-8") | |
FONT_TEXT = ImageFont.truetype(BytesIO(req.content), 75, encoding="utf-8") | |
TITLE_TEXT = ImageFont.truetype(BytesIO(req.content), 75, encoding="utf-8") | |
#FONT_USER_INFO = ImageFont.load_default() | |
#FONT_TEXT = ImageFont.load_default() | |
# Image dimensions (pixels) | |
WIDTH = 768 | |
HEIGHT = 768 | |
# Color scheme | |
COLOR_BG = 'white' | |
COLOR_NAME = 'black' | |
COLOR_TAG = (64, 64, 64) | |
COLOR_TEXT = 'black' | |
# Write coordinates | |
COORD_PHOTO = (10, 40) | |
COORD_NAME = (10, 200) | |
COORD_TAG = (10, 280) | |
COORD_TEXT = (10, 128) | |
# Extra space to add in between lines of text | |
LINE_MARGIN = 5 | |
# ----------------------------------------------------------------------------- | |
# Information for the image | |
# ----------------------------------------------------------------------------- | |
text = getadline(input_keyword) | |
print(text) | |
img_name = "textimage" | |
# ----------------------------------------------------------------------------- | |
# Setup of variables and calculations | |
# ----------------------------------------------------------------------------- | |
# Break the text string into smaller strings, each having a maximum of 37\ | |
# characters (a.k.a. create the lines of text for the image) | |
text_string_lines = wrap(text, 10) | |
# Horizontal position at which to start drawing each line of the tweet body | |
x = COORD_TEXT[0] | |
# Current vertical position of drawing (starts as the first vertical drawing\ | |
# position of the tweet body) | |
y = COORD_TEXT[1] | |
# Create an Image object to be used as a means of extracting the height needed\ | |
# to draw each line of text | |
temp_img = Image.new('RGB', (0, 0)) | |
temp_img_draw_interf = ImageDraw.Draw(temp_img) | |
# List with the height (pixels) needed to draw each line of the tweet body | |
# Loop through each line of text, and extract the height needed to draw it,\ | |
# using our font settings | |
line_height = [ | |
temp_img_draw_interf.textsize(text_string_lines[i], font=FONT_TEXT )[1] | |
for i in range(len(text_string_lines)) | |
] | |
# ----------------------------------------------------------------------------- | |
# Image creation | |
# ----------------------------------------------------------------------------- | |
# Create what will be the final image | |
img_final = Image.new('RGB', (WIDTH, HEIGHT), color='white') | |
# Create the drawing interface | |
draw_interf = ImageDraw.Draw(img_final) | |
# Draw each line of the tweet body. To find the height at which the next\ | |
# line will be drawn, add the line height of the next line to the current\ | |
# y position, along with a small margin | |
for index, line in enumerate(text_string_lines): | |
# Draw a line of text | |
draw_interf.text((x, y), line, font=FONT_USER_INFO, fill=COLOR_TEXT) | |
# Increment y to draw the next line at the adequate height | |
y += line_height[index] + LINE_MARGIN | |
# Load the user photo (read-mode). It should be a 250x250 circle | |
#user_photo = Image.open('userprofilepic.png', 'r').convert("RGBA") | |
# Paste the user photo into the working image. We also use the photo for\ | |
# its own mask to keep the photo's transparencies | |
#img_final.paste(user_photo, COORD_PHOTO, mask=user_photo) | |
# Finally, save the created image | |
img_final.save(f'{img_name}.png') | |
# ----------------------------------------------------------------------------- | |
im = Image.open(img_name+".png") | |
width_orig, height_orig = im.size | |
print(width_orig, height_orig) | |
im_bar = Image.open("generation.png") | |
width_orig_x, height_orig_x = im_bar.size | |
print(width_orig_x, height_orig_x) | |
im_bar = im_bar.resize((int(width_orig / 1), int(height_orig / 1))) | |
new_im = Image.new('RGB', (2*im.size[0],1*im_bar.size[1]), (250,250,250)) | |
new_im.paste(im, (0,0)) | |
new_im.paste(im_bar, (im.size[0],0)) | |
new_im.save('finalimage.png') | |
return 'finalimage.png' | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1><center>Ad for Your Business</center></h1>") | |
gr.Markdown( | |
"""ChatGPT based Insights from <a href="https://www.decodem.ai">Decodem.ai</a> for businesses.\nWhile ChatGPT has multiple use cases we have evolved specific use cases/ templates for businesses \n\n This template provides ideas on how a business can generate Advertisement ideas for a product. Enter a product area to size and get the results. Use examples as a guide. We use a equally powerful AI model bigscience/bloom.""" | |
) | |
textbox = gr.Textbox(placeholder="Enter product name...", lines=1,label='Your product') | |
btn = gr.Button("Generate") | |
#output1 = gr.Textbox(lines=2,label='Market Sizing Framework') | |
output_image = gr.components.Image(label="Your Advertisement") | |
btn.click(getadvertisement,inputs=[textbox], outputs=[output_image]) | |
examples = gr.Examples(examples=['spectacles','rice cooker','smart watch','coffee mug',], | |
inputs=[textbox]) | |
demo.launch() |