Spaces:
Runtime error
Runtime error
deep-learning-analytics
commited on
Commit
•
0c8c105
1
Parent(s):
d0f63c1
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,10 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
### Run Model
|
3 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
4 |
import torch
|
@@ -6,11 +12,20 @@ torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
6 |
tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector')
|
7 |
model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector').to(torch_device)
|
8 |
|
9 |
-
def correct_grammar(input_text,num_return_sequences=
|
10 |
batch = tokenizer([input_text],truncation=True,padding='max_length',max_length=64, return_tensors="pt").to(torch_device)
|
11 |
results = model.generate(**batch,max_length=64,num_beams=2, num_return_sequences=num_return_sequences, temperature=1.5)
|
12 |
-
answer = tokenizer.batch_decode(results[0], skip_special_tokens=True)
|
13 |
-
return
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
default_value = "Mike and Anna is skiing"
|
4 |
+
sent = st.text_area("Text", default_value, height = 275)
|
5 |
+
num_return_sequences = st.sidebar.number_input('Number of Return Sequences', min_value=1, max_value=3, value=1, step=1)
|
6 |
+
|
7 |
+
@st.cache
|
8 |
### Run Model
|
9 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
10 |
import torch
|
|
|
12 |
tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector')
|
13 |
model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector').to(torch_device)
|
14 |
|
15 |
+
def correct_grammar(input_text,num_return_sequences=num_return_sequences):
|
16 |
batch = tokenizer([input_text],truncation=True,padding='max_length',max_length=64, return_tensors="pt").to(torch_device)
|
17 |
results = model.generate(**batch,max_length=64,num_beams=2, num_return_sequences=num_return_sequences, temperature=1.5)
|
18 |
+
#answer = tokenizer.batch_decode(results[0], skip_special_tokens=True)
|
19 |
+
return results
|
20 |
|
21 |
+
##Prompts
|
22 |
+
st.title("Correct Grammar with Transformers 🦄")
|
23 |
+
results = correct_grammar(sent, num_return_sequences)
|
24 |
+
|
25 |
+
generated_sequences = []
|
26 |
+
for generated_sequence_idx, generated_sequence in enumerate(results):
|
27 |
+
# Decode text
|
28 |
+
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
|
29 |
+
generated_sequences.append(generated_sequence)
|
30 |
+
|
31 |
+
st.write(generated_sequences)
|