import streamlit as st default_value = "Mike and Anna is skiing" sent = st.text_area("Text", default_value, height = 50) num_return_sequences = st.sidebar.number_input('Number of Return Sequences', min_value=1, max_value=3, value=1, step=1) ### Run Model from transformers import T5ForConditionalGeneration, T5Tokenizer import torch torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = T5Tokenizer.from_pretrained('deep-learning-analytics/GrammarCorrector') model = T5ForConditionalGeneration.from_pretrained('deep-learning-analytics/GrammarCorrector').to(torch_device) def correct_grammar(input_text,num_return_sequences=num_return_sequences): batch = tokenizer([input_text],truncation=True,padding='max_length',max_length=64, return_tensors="pt").to(torch_device) results = model.generate(**batch,max_length=64,num_beams=2, num_return_sequences=num_return_sequences, temperature=1.5) #answer = tokenizer.batch_decode(results[0], skip_special_tokens=True) return results ##Prompts st.title("Correct Grammar with Transformers 🦄") results = correct_grammar(sent, num_return_sequences) generated_sequences = [] for generated_sequence_idx, generated_sequence in enumerate(results): # Decode text text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, skip_special_tokens=True) generated_sequences.append(text) st.write(generated_sequences)