Spaces:
Running
Running
dev(narugo): code upgrade
Browse files- README.md +1 -1
- app2.py +19 -0
- detection/__init__.py +2 -0
- detection/base.py +117 -0
- detection/eyes.py +33 -0
- requirements.txt +3 -3
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: π
|
|
4 |
colorFrom: gray
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app2.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from detection import EyesDetection
|
6 |
+
|
7 |
+
_GLOBAL_CSS = """
|
8 |
+
.limit-height {
|
9 |
+
max-height: 55vh;
|
10 |
+
}
|
11 |
+
"""
|
12 |
+
|
13 |
+
if __name__ == '__main__':
|
14 |
+
with gr.Blocks(css=_GLOBAL_CSS) as demo:
|
15 |
+
with gr.Tabs():
|
16 |
+
with gr.Tab('Eyes Detection'):
|
17 |
+
EyesDetection().make_ui()
|
18 |
+
|
19 |
+
demo.queue(os.cpu_count()).launch()
|
detection/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .base import ObjectDetection, DeepGHSObjectDetection
|
2 |
+
from .eyes import EyesDetection
|
detection/base.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
from functools import lru_cache
|
3 |
+
from typing import List, Tuple
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from hbutils.color import rnd_colors
|
7 |
+
from hfutils.operate import get_hf_fs
|
8 |
+
from hfutils.utils import hf_fs_path, parse_hf_fs_path
|
9 |
+
from imgutils.data import ImageTyping
|
10 |
+
|
11 |
+
|
12 |
+
class ObjectDetection:
|
13 |
+
@lru_cache()
|
14 |
+
def get_default_model(self) -> str:
|
15 |
+
return self._get_default_model()
|
16 |
+
|
17 |
+
def _get_default_model(self) -> str:
|
18 |
+
raise NotImplementedError
|
19 |
+
|
20 |
+
@lru_cache()
|
21 |
+
def list_models(self) -> List[str]:
|
22 |
+
return self._list_models()
|
23 |
+
|
24 |
+
def _list_models(self) -> List[str]:
|
25 |
+
raise NotImplementedError
|
26 |
+
|
27 |
+
@lru_cache()
|
28 |
+
def get_default_iou_and_score(self, model_name: str) -> Tuple[float, float]:
|
29 |
+
return self._get_default_iou_and_score(model_name)
|
30 |
+
|
31 |
+
def _get_default_iou_and_score(self, model_name: str) -> Tuple[float, float]:
|
32 |
+
raise NotImplementedError
|
33 |
+
|
34 |
+
@lru_cache()
|
35 |
+
def get_labels(self, model_name: str) -> List[str]:
|
36 |
+
return self._get_labels(model_name)
|
37 |
+
|
38 |
+
def _get_labels(self, model_name: str) -> List[str]:
|
39 |
+
raise NotImplementedError
|
40 |
+
|
41 |
+
def detect(self, image: ImageTyping, model_name: str,
|
42 |
+
iou_threshold: float = 0.7, score_threshold: float = 0.25) \
|
43 |
+
-> List[Tuple[Tuple[float, float, float, float], str, float]]:
|
44 |
+
raise NotImplementedError
|
45 |
+
|
46 |
+
def _gr_detect(self, image: ImageTyping, model_name: str,
|
47 |
+
iou_threshold: float = 0.7, score_threshold: float = 0.25) \
|
48 |
+
-> gr.AnnotatedImage:
|
49 |
+
labels = self.get_labels(model_name=model_name)
|
50 |
+
_colors = list(map(str, rnd_colors(len(labels))))
|
51 |
+
_color_map = dict(zip(labels, _colors))
|
52 |
+
return gr.AnnotatedImage(
|
53 |
+
value=(image, [
|
54 |
+
(bbox, label) for bbox, label, _ in
|
55 |
+
self.detect(image, model_name, iou_threshold, score_threshold)
|
56 |
+
]),
|
57 |
+
color_map=_color_map,
|
58 |
+
label='Labeled',
|
59 |
+
)
|
60 |
+
|
61 |
+
def make_ui(self):
|
62 |
+
with gr.Row():
|
63 |
+
with gr.Column():
|
64 |
+
default_model_name = self.get_default_model()
|
65 |
+
model_list = self.list_models()
|
66 |
+
gr_input_image = gr.Image(type='pil', label='Original Image')
|
67 |
+
gr_model = gr.Dropdown(model_list, value=default_model_name, label='Model')
|
68 |
+
with gr.Row():
|
69 |
+
iou, score = self.get_default_iou_and_score(default_model_name)
|
70 |
+
gr_iou_threshold = gr.Slider(0.0, 1.0, iou, label='IOU Threshold')
|
71 |
+
gr_score_threshold = gr.Slider(0.0, 1.0, score, label='Score Threshold')
|
72 |
+
|
73 |
+
gr_submit = gr.Button(value='Submit', variant='primary')
|
74 |
+
|
75 |
+
with gr.Column():
|
76 |
+
gr_output_image = gr.AnnotatedImage(label="Labeled")
|
77 |
+
|
78 |
+
gr_submit.click(
|
79 |
+
self._gr_detect,
|
80 |
+
inputs=[
|
81 |
+
gr_input_image,
|
82 |
+
gr_model,
|
83 |
+
gr_iou_threshold,
|
84 |
+
gr_score_threshold,
|
85 |
+
],
|
86 |
+
outputs=[gr_output_image],
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
class DeepGHSObjectDetection(ObjectDetection):
|
91 |
+
def __init__(self, repo_id: str):
|
92 |
+
self._repo_id = repo_id
|
93 |
+
|
94 |
+
def _get_default_model(self) -> str:
|
95 |
+
raise NotImplementedError
|
96 |
+
|
97 |
+
def _list_models(self) -> List[str]:
|
98 |
+
hf_fs = get_hf_fs()
|
99 |
+
return [
|
100 |
+
os.path.dirname(parse_hf_fs_path(path).filename)
|
101 |
+
for path in hf_fs.glob(hf_fs_path(
|
102 |
+
repo_id=self._repo_id,
|
103 |
+
repo_type='model',
|
104 |
+
filename='*/model.onnx'
|
105 |
+
))
|
106 |
+
]
|
107 |
+
|
108 |
+
def _get_default_iou_and_score(self, model_name: str) -> Tuple[float, float]:
|
109 |
+
raise NotImplementedError
|
110 |
+
|
111 |
+
def _get_labels(self, model_name: str) -> List[str]:
|
112 |
+
raise NotImplementedError
|
113 |
+
|
114 |
+
def detect(self, image: ImageTyping, model_name: str,
|
115 |
+
iou_threshold: float = 0.7, score_threshold: float = 0.25) \
|
116 |
+
-> List[Tuple[Tuple[float, float, float, float], str, float]]:
|
117 |
+
raise NotImplementedError
|
detection/eyes.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import List, Tuple
|
3 |
+
|
4 |
+
from imgutils.data import ImageTyping
|
5 |
+
from imgutils.detect.eye import detect_eyes, _LABELS
|
6 |
+
|
7 |
+
from .base import DeepGHSObjectDetection
|
8 |
+
|
9 |
+
|
10 |
+
def _parse_model_name(model_name: str):
|
11 |
+
matching = re.fullmatch(r'^eye_detect_(?P<version>[\s\S]+?)_(?P<level>[\s\S]+?)$', model_name)
|
12 |
+
return matching.group('version'), matching.group('level')
|
13 |
+
|
14 |
+
|
15 |
+
class EyesDetection(DeepGHSObjectDetection):
|
16 |
+
def __init__(self):
|
17 |
+
DeepGHSObjectDetection.__init__(self, repo_id='deepghs/anime_eye_detection')
|
18 |
+
|
19 |
+
def _get_default_model(self) -> str:
|
20 |
+
return 'eye_detect_v1.0_s'
|
21 |
+
|
22 |
+
def _get_default_iou_and_score(self, model_name: str) -> Tuple[float, float]:
|
23 |
+
return 0.3, 0.3
|
24 |
+
|
25 |
+
def _get_labels(self, model_name: str) -> List[str]:
|
26 |
+
return _LABELS
|
27 |
+
|
28 |
+
def detect(self, image: ImageTyping, model_name: str,
|
29 |
+
iou_threshold: float = 0.7, score_threshold: float = 0.25) \
|
30 |
+
-> List[Tuple[Tuple[float, float, float, float], str, float]]:
|
31 |
+
version, level = _parse_model_name(model_name)
|
32 |
+
return detect_eyes(image, level=level, version=version,
|
33 |
+
conf_threshold=score_threshold, iou_threshold=iou_threshold)
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio
|
2 |
numpy
|
3 |
pillow
|
4 |
onnxruntime
|
@@ -7,5 +7,5 @@ scikit-image
|
|
7 |
pandas
|
8 |
opencv-python>=4.6.0
|
9 |
hbutils>=0.9.0
|
10 |
-
dghs-imgutils>=0.0
|
11 |
-
httpx
|
|
|
1 |
+
gradio>=4.44.0
|
2 |
numpy
|
3 |
pillow
|
4 |
onnxruntime
|
|
|
7 |
pandas
|
8 |
opencv-python>=4.6.0
|
9 |
hbutils>=0.9.0
|
10 |
+
dghs-imgutils>=0.5.0
|
11 |
+
httpx
|