from functools import lru_cache from huggingface_hub import hf_hub_download from imgutils.data import ImageTyping, load_image, rgb_encode from onnx_ import _open_onnx_model from plot import detection_visualize from yolo_ import _image_preprocess, _data_postprocess _PERSON_MODELS = [ 'person_detect_plus_v1.1_best_m.onnx', 'person_detect_plus_v1.1_best_s.onnx', 'person_detect_plus_v1.1_best_n.onnx', 'person_detect_plus_best_m.onnx', 'person_detect_best_m.onnx', 'person_detect_best_x.onnx', 'person_detect_best_s.onnx', ] _DEFAULT_PERSON_MODEL = _PERSON_MODELS[0] @lru_cache() def _open_person_detect_model(model_name): return _open_onnx_model(hf_hub_download( 'deepghs/imgutils-models', f'person_detect/{model_name}' )) _LABELS = ['person'] def detect_person(image: ImageTyping, model_name: str, max_infer_size=640, conf_threshold: float = 0.3, iou_threshold: float = 0.5): image = load_image(image, mode='RGB') new_image, old_size, new_size = _image_preprocess(image, max_infer_size) data = rgb_encode(new_image)[None, ...] output, = _open_person_detect_model(model_name).run(['output0'], {'images': data}) return _data_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size, _LABELS) def _gr_detect_person(image: ImageTyping, model_name: str, max_infer_size=640, conf_threshold: float = 0.3, iou_threshold: float = 0.5): ret = detect_person(image, model_name, max_infer_size, conf_threshold, iou_threshold) return detection_visualize(image, ret, _LABELS)