Julián Tachella commited on
Commit
26a9ba5
·
1 Parent(s): 8a7fe4e
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -37,20 +37,22 @@ def image_mod(image, noise_level, denoiser):
37
  return torch_to_pil(noisy), torch_to_pil(estimated)
38
 
39
 
40
- input_image = gr.Image(label='Input Image')
41
  output_images = gr.Image(label='Denoised Image')
42
  noise_image = gr.Image(label='Noisy Image')
43
  input_image_output = gr.Image(label='Input Image')
44
 
45
  noise_levels = gr.Dropdown(choices=[0.1, 0.2, 0.3, 0.4, 0.5], value=0.1, label='Noise Level')
46
 
47
- denoiser = gr.Dropdown(choices=['DnCNN', 'DRUNet', 'BM3D', 'MedianFilter'], value=0.1, label='DRUNet')
48
 
49
  demo = gr.Interface(
50
  image_mod,
51
  inputs=[input_image, noise_levels, denoiser],
 
52
  outputs=[noise_image, output_images],
53
  title="Image Denoising with DeepInverse",
 
54
  )
55
 
56
  demo.launch()
 
37
  return torch_to_pil(noisy), torch_to_pil(estimated)
38
 
39
 
40
+ input_image = gr.Image(label='Input Image', examples=[])
41
  output_images = gr.Image(label='Denoised Image')
42
  noise_image = gr.Image(label='Noisy Image')
43
  input_image_output = gr.Image(label='Input Image')
44
 
45
  noise_levels = gr.Dropdown(choices=[0.1, 0.2, 0.3, 0.4, 0.5], value=0.1, label='Noise Level')
46
 
47
+ denoiser = gr.Dropdown(choices=['DnCNN', 'DRUNet', 'BM3D', 'MedianFilter'], value='DnCNN', label='Denoiser')
48
 
49
  demo = gr.Interface(
50
  image_mod,
51
  inputs=[input_image, noise_levels, denoiser],
52
+ examples=[['https://deepinv.github.io/deepinv/_static/deepinv_logolarge.png', 0.1, 'DnCNN']],
53
  outputs=[noise_image, output_images],
54
  title="Image Denoising with DeepInverse",
55
+ description="Denoise an image using a variety of denoisers and noise levels using the deepinverse library (https://deepinv.github.io/). We only include lightweight models like DnCNN and MedianFilter as this example is intended to be run on a CPU.",
56
  )
57
 
58
  demo.launch()