Spaces:
Sleeping
Sleeping
Julián Tachella
commited on
Commit
·
71c2965
1
Parent(s):
76c7ca0
test
Browse files
app.py
CHANGED
@@ -5,13 +5,13 @@ import numpy as np
|
|
5 |
import PIL.Image
|
6 |
|
7 |
|
8 |
-
def pil_to_torch(image, ref_size=
|
9 |
image = np.array(image)
|
10 |
image = image.transpose((2, 0, 1))
|
11 |
image = torch.tensor(image).float() / 255
|
12 |
image = image.unsqueeze(0)
|
13 |
|
14 |
-
if ref_size ==
|
15 |
size = (ref_size, ref_size)
|
16 |
elif image.shape[2] > image.shape[3]:
|
17 |
size = (ref_size, ref_size * image.shape[3]//image.shape[2])
|
@@ -31,7 +31,7 @@ def torch_to_pil(image):
|
|
31 |
|
32 |
|
33 |
def image_mod(image, noise_level, denoiser):
|
34 |
-
image = pil_to_torch(image, ref_size=
|
35 |
if denoiser == 'DnCNN':
|
36 |
den = dinv.models.DnCNN()
|
37 |
sigma0 = 2/255
|
@@ -62,17 +62,17 @@ output_images = gr.Image(label='Denoised Image')
|
|
62 |
noise_image = gr.Image(label='Noisy Image')
|
63 |
input_image_output = gr.Image(label='Input Image')
|
64 |
|
65 |
-
noise_levels = gr.Dropdown(choices=[0.1, 0.2, 0.3, 0.5, 1], value=0.1, label='Noise Level')
|
66 |
|
67 |
-
denoiser = gr.Dropdown(choices=['DnCNN', 'DRUNet', 'DiffUNet', 'BM3D', 'MedianFilter', 'TV', 'TGV', 'Wavelets'], value='
|
68 |
|
69 |
demo = gr.Interface(
|
70 |
image_mod,
|
71 |
inputs=[input_image, noise_levels, denoiser],
|
72 |
-
examples=[['https://
|
73 |
outputs=[noise_image, output_images],
|
74 |
title="Image Denoising with DeepInverse",
|
75 |
-
description="Denoise an image using a variety of denoisers and noise levels using the deepinverse library (https://deepinv.github.io/). We only include lightweight models like DnCNN and MedianFilter as this example is intended to be run on a CPU. We also automatically resize the input image to
|
76 |
)
|
77 |
|
78 |
demo.launch()
|
|
|
5 |
import PIL.Image
|
6 |
|
7 |
|
8 |
+
def pil_to_torch(image, ref_size=512):
|
9 |
image = np.array(image)
|
10 |
image = image.transpose((2, 0, 1))
|
11 |
image = torch.tensor(image).float() / 255
|
12 |
image = image.unsqueeze(0)
|
13 |
|
14 |
+
if ref_size == 256:
|
15 |
size = (ref_size, ref_size)
|
16 |
elif image.shape[2] > image.shape[3]:
|
17 |
size = (ref_size, ref_size * image.shape[3]//image.shape[2])
|
|
|
31 |
|
32 |
|
33 |
def image_mod(image, noise_level, denoiser):
|
34 |
+
image = pil_to_torch(image, ref_size=256 if denoiser == 'DiffUNet' else 512)
|
35 |
if denoiser == 'DnCNN':
|
36 |
den = dinv.models.DnCNN()
|
37 |
sigma0 = 2/255
|
|
|
62 |
noise_image = gr.Image(label='Noisy Image')
|
63 |
input_image_output = gr.Image(label='Input Image')
|
64 |
|
65 |
+
noise_levels = gr.Dropdown(choices=[0.05, 0.1, 0.2, 0.3, 0.5, 1], value=0.1, label='Noise Level')
|
66 |
|
67 |
+
denoiser = gr.Dropdown(choices=['DnCNN', 'DRUNet', 'DiffUNet', 'BM3D', 'MedianFilter', 'TV', 'TGV', 'Wavelets'], value='DRUNet', label='Denoiser')
|
68 |
|
69 |
demo = gr.Interface(
|
70 |
image_mod,
|
71 |
inputs=[input_image, noise_levels, denoiser],
|
72 |
+
examples=[['https://upload.wikimedia.org/wikipedia/commons/b/b4/Lionel-Messi-Argentina-2022-FIFA-World-Cup_%28cropped%29.jpg', 0.1, 'DRUNet']],
|
73 |
outputs=[noise_image, output_images],
|
74 |
title="Image Denoising with DeepInverse",
|
75 |
+
description="Denoise an image using a variety of denoisers and noise levels using the deepinverse library (https://deepinv.github.io/). We only include lightweight models like DnCNN and MedianFilter as this example is intended to be run on a CPU. We also automatically resize the input image to 512 pixels to reduce the computation time. For more advanced models, please run the code locally.",
|
76 |
)
|
77 |
|
78 |
demo.launch()
|