Spaces:
Sleeping
Sleeping
Julián Tachella
commited on
Commit
·
da5fdaa
1
Parent(s):
f3af5c1
test
Browse files
app.py
CHANGED
@@ -9,13 +9,15 @@ def pil_to_torch(image):
|
|
9 |
image = np.array(image)
|
10 |
image = image.transpose((2, 0, 1))
|
11 |
image = torch.tensor(image).float() / 255
|
12 |
-
|
|
|
|
|
13 |
|
14 |
|
15 |
def torch_to_pil(image):
|
16 |
image = image.squeeze(0).cpu().detach().numpy()
|
17 |
image = image.transpose((1, 2, 0))
|
18 |
-
image = (image * 255).astype(np.uint8)
|
19 |
image = PIL.Image.fromarray(image)
|
20 |
return image
|
21 |
|
@@ -28,6 +30,10 @@ def image_mod(image, noise_level, denoiser):
|
|
28 |
denoiser = dinv.models.MedianFilter()
|
29 |
elif denoiser == 'BM3D':
|
30 |
denoiser = dinv.models.BM3D()
|
|
|
|
|
|
|
|
|
31 |
elif denoiser == 'DRUNet':
|
32 |
denoiser = dinv.models.DRUNet()
|
33 |
else:
|
@@ -44,7 +50,7 @@ input_image_output = gr.Image(label='Input Image')
|
|
44 |
|
45 |
noise_levels = gr.Dropdown(choices=[0.1, 0.2, 0.3, 0.4, 0.5], value=0.1, label='Noise Level')
|
46 |
|
47 |
-
denoiser = gr.Dropdown(choices=['DnCNN', 'DRUNet', 'BM3D', 'MedianFilter'], value='DnCNN', label='Denoiser')
|
48 |
|
49 |
demo = gr.Interface(
|
50 |
image_mod,
|
|
|
9 |
image = np.array(image)
|
10 |
image = image.transpose((2, 0, 1))
|
11 |
image = torch.tensor(image).float() / 255
|
12 |
+
image = image.unsqueeze(0)
|
13 |
+
image = torch.nn.functional.interpolate(image.unsqueeze(0), size=(128, 128*image.shape[3]//image.shape[2]))
|
14 |
+
return image
|
15 |
|
16 |
|
17 |
def torch_to_pil(image):
|
18 |
image = image.squeeze(0).cpu().detach().numpy()
|
19 |
image = image.transpose((1, 2, 0))
|
20 |
+
image = (np.clip(image, 0, 1) * 255).astype(np.uint8)
|
21 |
image = PIL.Image.fromarray(image)
|
22 |
return image
|
23 |
|
|
|
30 |
denoiser = dinv.models.MedianFilter()
|
31 |
elif denoiser == 'BM3D':
|
32 |
denoiser = dinv.models.BM3D()
|
33 |
+
elif denoiser == 'TV':
|
34 |
+
denoiser = dinv.models.TVDenoiser()
|
35 |
+
elif denoiser == 'TGV':
|
36 |
+
denoiser = dinv.models.TGVDenoiser()
|
37 |
elif denoiser == 'DRUNet':
|
38 |
denoiser = dinv.models.DRUNet()
|
39 |
else:
|
|
|
50 |
|
51 |
noise_levels = gr.Dropdown(choices=[0.1, 0.2, 0.3, 0.4, 0.5], value=0.1, label='Noise Level')
|
52 |
|
53 |
+
denoiser = gr.Dropdown(choices=['DnCNN', 'DRUNet', 'BM3D', 'MedianFilter', 'TV', 'TGV'], value='DnCNN', label='Denoiser')
|
54 |
|
55 |
demo = gr.Interface(
|
56 |
image_mod,
|