Spaces:
Sleeping
Sleeping
Julián Tachella
commited on
Commit
·
ece0ce5
1
Parent(s):
29c29f7
test
Browse files
app.py
CHANGED
@@ -10,7 +10,14 @@ def pil_to_torch(image):
|
|
10 |
image = image.transpose((2, 0, 1))
|
11 |
image = torch.tensor(image).float() / 255
|
12 |
image = image.unsqueeze(0)
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
return image
|
15 |
|
16 |
|
@@ -27,7 +34,7 @@ def image_mod(image, noise_level, denoiser):
|
|
27 |
if denoiser == 'DnCNN':
|
28 |
denoiser = dinv.models.DnCNN()
|
29 |
elif denoiser == 'MedianFilter':
|
30 |
-
denoiser = dinv.models.MedianFilter()
|
31 |
elif denoiser == 'BM3D':
|
32 |
denoiser = dinv.models.BM3D()
|
33 |
elif denoiser == 'TV':
|
@@ -58,7 +65,7 @@ demo = gr.Interface(
|
|
58 |
examples=[['https://deepinv.github.io/deepinv/_static/deepinv_logolarge.png', 0.1, 'DnCNN']],
|
59 |
outputs=[noise_image, output_images],
|
60 |
title="Image Denoising with DeepInverse",
|
61 |
-
description="Denoise an image using a variety of denoisers and noise levels using the deepinverse library (https://deepinv.github.io/). We only include lightweight models like DnCNN and MedianFilter as this example is intended to be run on a CPU. We also automatically resize the input image to
|
62 |
)
|
63 |
|
64 |
demo.launch()
|
|
|
10 |
image = image.transpose((2, 0, 1))
|
11 |
image = torch.tensor(image).float() / 255
|
12 |
image = image.unsqueeze(0)
|
13 |
+
|
14 |
+
ref_size = 256
|
15 |
+
if image.shape[2] > image.shape[3]:
|
16 |
+
size = (ref_size, ref_size * image.shape[2]//image.shape[3])
|
17 |
+
else:
|
18 |
+
size = (ref_size * image.shape[3]//image.shape[2], ref_size)
|
19 |
+
|
20 |
+
image = torch.nn.functional.interpolate(image, size=size, mode='bilinear')
|
21 |
return image
|
22 |
|
23 |
|
|
|
34 |
if denoiser == 'DnCNN':
|
35 |
denoiser = dinv.models.DnCNN()
|
36 |
elif denoiser == 'MedianFilter':
|
37 |
+
denoiser = dinv.models.MedianFilter(kernel_size=5)
|
38 |
elif denoiser == 'BM3D':
|
39 |
denoiser = dinv.models.BM3D()
|
40 |
elif denoiser == 'TV':
|
|
|
65 |
examples=[['https://deepinv.github.io/deepinv/_static/deepinv_logolarge.png', 0.1, 'DnCNN']],
|
66 |
outputs=[noise_image, output_images],
|
67 |
title="Image Denoising with DeepInverse",
|
68 |
+
description="Denoise an image using a variety of denoisers and noise levels using the deepinverse library (https://deepinv.github.io/). We only include lightweight models like DnCNN and MedianFilter as this example is intended to be run on a CPU. We also automatically resize the input image to 256 vertical pixels to reduce the computation time. For more advanced models, please run the code locally.",
|
69 |
)
|
70 |
|
71 |
demo.launch()
|