import gradio as gr import deepinv as dinv import torch import numpy as np import PIL.Image def pil_to_torch(image, ref_size=512): image = np.array(image) image = image.transpose((2, 0, 1)) image = torch.tensor(image).float() / 255 image = image.unsqueeze(0) if ref_size == 256: size = (ref_size, ref_size) elif image.shape[2] > image.shape[3]: size = (ref_size, ref_size * image.shape[3]//image.shape[2]) else: size = (ref_size * image.shape[2]//image.shape[3], ref_size) image = torch.nn.functional.interpolate(image, size=size, mode='bilinear') return image def torch_to_pil(image): image = image.squeeze(0).cpu().detach().numpy() image = image.transpose((1, 2, 0)) image = (np.clip(image, 0, 1) * 255).astype(np.uint8) image = PIL.Image.fromarray(image) return image def image_mod(image, noise_level, denoiser): image = pil_to_torch(image, ref_size=256 if denoiser == 'DiffUNet' else 512) if denoiser == 'DnCNN': den = dinv.models.DnCNN() sigma0 = 2/255 denoiser = lambda x, sigma: den(x*sigma0/sigma)*sigma/sigma0 elif denoiser == 'MedianFilter': denoiser = dinv.models.MedianFilter(kernel_size=5) elif denoiser == 'BM3D': denoiser = dinv.models.BM3D() elif denoiser == 'TV': denoiser = dinv.models.TVDenoiser() elif denoiser == 'TGV': denoiser = dinv.models.TGVDenoiser() elif denoiser == 'Wavelets': denoiser = dinv.models.WaveletPrior() elif denoiser == 'DiffUNet': denoiser = dinv.models.DiffUNet() elif denoiser == 'DRUNet': denoiser = dinv.models.DRUNet() else: raise ValueError("Invalid denoiser") noisy = image + torch.randn_like(image) * noise_level estimated = denoiser(noisy, noise_level) return torch_to_pil(noisy), torch_to_pil(estimated) input_image = gr.Image(label='Input Image') output_images = gr.Image(label='Denoised Image') noise_image = gr.Image(label='Noisy Image') input_image_output = gr.Image(label='Input Image') noise_levels = gr.Dropdown(choices=[0.05, 0.1, 0.2, 0.3, 0.5, 1], value=0.1, label='Noise Level') denoiser = gr.Dropdown(choices=['DnCNN', 'DRUNet', 'DiffUNet', 'BM3D', 'MedianFilter', 'TV', 'TGV', 'Wavelets'], value='DRUNet', label='Denoiser') demo = gr.Interface( image_mod, inputs=[input_image, noise_levels, denoiser], examples=[['https://upload.wikimedia.org/wikipedia/commons/b/b4/Lionel-Messi-Argentina-2022-FIFA-World-Cup_%28cropped%29.jpg', 0.1, 'DRUNet']], outputs=[noise_image, output_images], title="Image Denoising with DeepInverse", description="Denoise an image using a variety of denoisers and noise levels using the deepinverse library (https://deepinv.github.io/). We only include lightweight models like DnCNN and MedianFilter as this example is intended to be run on a CPU. We also automatically resize the input image to 512 pixels to reduce the computation time. For more advanced models, please run the code locally.", ) demo.launch()