File size: 6,971 Bytes
1ba3df3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from pathlib import Path
from typing import Dict, List, Union, Tuple

from omegaconf import OmegaConf
import numpy as np
import torch
from torch import nn
from PIL import Image, ImageDraw, ImageFont

import models

GENERATOR_PREFIX = "networks.g."
WHITE = 255
EXAMPLE_CHARACTERS = ['A', 'B', 'C', 'D', 'E']

class InferenceServicer:
    def __init__(self, hp, checkpoint_path, content_image_dir, imsize=64, gpu_id='0') -> None:
        self.hp = hp
        self.imsize = imsize
        
        if gpu_id is None:
            self.device = torch.device(f'cuda:0') if torch.cuda.is_available() else 'cpu'
        else:
            self.device = torch.device(f'cuda:{gpu_id}')
        
        model_config = self.hp.models.G
        self.model: nn.Module = models.Generator(model_config)
        
        # Load Generator model weight
        model_state_dict_pl = torch.load(checkpoint_path, map_location='cpu')
        generator_state_dict = self.convert_generator_state_dict(model_state_dict_pl)
        self.model.load_state_dict(generator_state_dict)
        self.model.to(device=self.device)
        self.model.eval()
        
        # Setting Content font files
        self.content_character_dict = self.load_content_character_dict(Path(content_image_dir))
    
    @staticmethod
    def convert_generator_state_dict(model_state_dict_pl):
        generator_prefix = GENERATOR_PREFIX
        generator_state_dict = {}
        for module_name, module_state in model_state_dict_pl['state_dict'].items():
            if module_name.startswith(generator_prefix):
                generator_state_dict[module_name[len(generator_prefix):]] = module_state
    
        return generator_state_dict
    
    @staticmethod
    def load_content_character_dict(content_image_dir: Path) -> Dict[str, Path]:
        content_character_dict = {}
        for filepath in content_image_dir.glob("**/*.png"):
            content_character_dict[filepath.stem] = filepath
        return content_character_dict
    
    @staticmethod
    def center_align(bg_img: Image.Image, item_img: Image.Image, fit=False) -> Image.Image:
        bg_img = bg_img.copy()
        item_img = item_img.copy()
        item_w, item_h = item_img.size
        W, H = bg_img.size
        if fit:
            item_ratio = item_w / item_h
            bg_ratio = W / H

            if bg_ratio > item_ratio:
                # height fitting
                resize_ratio = H / item_h
            else:
                # width fitting
                resize_ratio = W / item_w
            item_img = item_img.resize((int(item_w * resize_ratio), int(item_h * resize_ratio)))
            item_w, item_h = item_img.size

        bg_img.paste(item_img, ((W - item_w) // 2, (H - item_h) // 2))
        return bg_img
        
    def set_image(self, image: Union[Path, Image.Image]) -> Image.Image:
        if isinstance(image, (str, Path)):
            image = Image.open(image)
        assert isinstance(image, Image.Image)
        
        bg_img = Image.new('RGB', (self.imsize, self.imsize), color='white')
        blend_img = self.center_align(bg_img, image, fit=True)
        return blend_img
    
    @staticmethod
    def pil_image_to_array(blend_img: Image.Image) -> np.ndarray:
        normalized_array = np.mean(np.array(blend_img, dtype=np.float32), axis=-1) / WHITE  # L-only image normalized to [0, 1]
        return normalized_array
    
    def get_images_from_fontfile(self, font_file_path: Path, imgmode: str = 'RGB', position: tuple = (0, 0), font_size: int = 128, padding: int = 100) -> List[Image.Image]:
        
        imagefont = ImageFont.truetype(str(font_file_path), size=font_size)
        example_characters = EXAMPLE_CHARACTERS

        font_images: List[Image.Image] = []
        
        for character in example_characters:
            x, y, _, _ = imagefont.getbbox(character)
            img = Image.new(imgmode, (x + padding, y + padding), color='white')
            draw = ImageDraw.Draw(img)
            
            # bbox = draw.textbbox((0,0), character, font=imagefont)
            # w = bbox[2] - bbox[0]
            # h = bbox[3] - bbox[1]
            
            w, h = draw.textsize(character, font=imagefont)
            
            img = Image.new(imgmode, (w + padding, h + padding), color='white')
            draw = ImageDraw.Draw(img)
            draw.text(position, text=character, font=imagefont, fill='black')
            img = img.convert(imgmode)
            font_images.append(img)

        return font_images
    
    @staticmethod
    def get_hex_from_char(char: str) -> str:
        assert len(char) == 1
        return f"{ord(char):04X}".upper()  # 4-digit hex string
    
    @torch.no_grad()
    def inference(self, content_char: str, style_font: Union[str, Path]) -> Tuple[Image.Image, List[Image.Image], Image.Image]:
        assert len(content_char) > 0
        content_char = content_char[:1]  # only get the first character if the length > 1
        char_hex = self.get_hex_from_char(content_char)
        
        if char_hex not in self.content_character_dict:
            raise ValueError(f"The character {content_char} (hex: {char_hex}) is not supported in this model!")
        
        content_image = self.set_image(self.content_character_dict[char_hex])
        style_images: List[Image.Image] = self.get_images_from_fontfile(Path(style_font))
        style_images: List[Image.Image] = [self.set_image(image) for image in style_images]
        
        content_image_array = self.pil_image_to_array(content_image)[np.newaxis, np.newaxis, ...]  # 1 x C(=1) x H x W
        style_images_array: np.ndarray = np.array([self.pil_image_to_array(image) for image in style_images])[np.newaxis, ...]  # 1 x C(=5, # shots) x H x W, k-shots goes to batch
        
        content_input_tensor = torch.from_numpy(content_image_array).to(self.device)
        style_input_tensor = torch.from_numpy(style_images_array).to(self.device)
        
        generated_images: torch.Tensor = self.model((content_input_tensor, style_input_tensor))
        generated_images = torch.clip(generated_images, 0, 1)
        assert generated_images.size(0) == 1
        
        generated_image_numpy = (generated_images[0].cpu().numpy() * 255).astype(np.uint8)[0, ...]  # H x W
        return content_image, style_images, Image.fromarray(generated_image_numpy, mode='L')


if __name__ == '__main__':
    hp = OmegaConf.load("config/models/google-font.yaml")
    checkpoint_path = "epoch=199-step=257400.ckpt"
    content_image_dir = "../DATA/NotoSans"
    
    servicer = InferenceServicer(hp, checkpoint_path, content_image_dir)
    
    style_font = "example_fonts/MaShanZheng-Regular.ttf"
    content_image, style_images, result = servicer.inference("7", style_font)
    
    content_image.save("result_content.png")
    for idx, style_image in enumerate(style_images):
        style_image.save(f"result_style_{idx:02d}.png")
    result.save("result_generated.png")