doubility123 commited on
Commit
edced0a
·
1 Parent(s): 53c8566

update codes

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .editorconfig +42 -0
  2. .flake8 +40 -0
  3. .gitattributes +10 -35
  4. .gitignore +415 -0
  5. .pre-commit-config.yaml +75 -0
  6. .pylintrc +629 -0
  7. DeepSeek_VL2_paper.pdf +3 -0
  8. LICENSE-CODE +21 -0
  9. LICENSE-MODEL +91 -0
  10. Makefile +97 -0
  11. README.md +399 -0
  12. deepseek_vl2/__init__.py +31 -0
  13. deepseek_vl2/models/__init__.py +26 -0
  14. deepseek_vl2/models/configuration_deepseek.py +210 -0
  15. deepseek_vl2/models/conversation.py +310 -0
  16. deepseek_vl2/models/modeling_deepseek.py +1975 -0
  17. deepseek_vl2/models/modeling_deepseek_vl_v2.py +697 -0
  18. deepseek_vl2/models/processing_deepseek_vl_v2.py +675 -0
  19. deepseek_vl2/models/siglip_vit.py +660 -0
  20. deepseek_vl2/serve/__init__.py +0 -0
  21. deepseek_vl2/serve/app_modules/__init__.py +0 -0
  22. deepseek_vl2/serve/app_modules/gradio_utils.py +83 -0
  23. deepseek_vl2/serve/app_modules/overwrites.py +81 -0
  24. deepseek_vl2/serve/app_modules/presets.py +115 -0
  25. deepseek_vl2/serve/app_modules/utils.py +333 -0
  26. deepseek_vl2/serve/assets/Kelpy-Codos.js +100 -0
  27. deepseek_vl2/serve/assets/avatar.png +3 -0
  28. deepseek_vl2/serve/assets/custom.css +355 -0
  29. deepseek_vl2/serve/assets/custom.js +22 -0
  30. deepseek_vl2/serve/assets/favicon.ico +3 -0
  31. deepseek_vl2/serve/assets/simsun.ttc +3 -0
  32. deepseek_vl2/serve/inference.py +198 -0
  33. deepseek_vl2/utils/__init__.py +18 -0
  34. deepseek_vl2/utils/io.py +80 -0
  35. images/grounding_conversation_1.jpeg +3 -0
  36. images/icl_vg_2.jpeg +3 -0
  37. images/incontext_visual_grounding_1.jpeg +3 -0
  38. images/logo.png +3 -0
  39. images/logo.svg +3 -0
  40. images/monday.jpg +3 -0
  41. images/multi_image_1.jpeg +3 -0
  42. images/multi_image_2.jpeg +3 -0
  43. images/multi_image_3.jpeg +3 -0
  44. images/qr.jpeg +3 -0
  45. images/sample.jpg +3 -0
  46. images/vg_2.jpeg +3 -0
  47. images/visual_grounding_1.jpeg +3 -0
  48. images/visual_grounding_2.jpg +3 -0
  49. images/visual_grounding_3.png +3 -0
  50. images/vl2_teaser.jpeg +3 -0
.editorconfig ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://editorconfig.org/
2
+
3
+ root = true
4
+
5
+ [*]
6
+ charset = utf-8
7
+ end_of_line = lf
8
+ indent_style = space
9
+ indent_size = 4
10
+ trim_trailing_whitespace = true
11
+ insert_final_newline = true
12
+
13
+ [*.py]
14
+ indent_size = 4
15
+ src_paths=evaluation
16
+
17
+ [*.{yaml,yml,json}]
18
+ indent_size = 2
19
+
20
+ [*.md]
21
+ indent_size = 2
22
+ x-soft-wrap-text = true
23
+
24
+ [*.rst]
25
+ indent_size = 4
26
+ x-soft-wrap-text = true
27
+
28
+ [*.{bib,tex}]
29
+ indent_size = 2
30
+
31
+ [Makefile]
32
+ indent_style = tab
33
+
34
+ [*.sh]
35
+ indent_style = tab
36
+
37
+ [*.bat]
38
+ end_of_line = crlf
39
+ indent_style = tab
40
+
41
+ [*.{cpp,h,cu,cuh}]
42
+ indent_size = 2
.flake8 ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [flake8]
2
+ max-line-length = 120
3
+ max-doc-length = 100
4
+ select = B,C,E,F,W,Y,SIM
5
+ ignore =
6
+ # E203: whitespace before ':'
7
+ # W503: line break before binary operator
8
+ # W504: line break after binary operator
9
+ # format by black
10
+ E203,W503,W504,
11
+ # E501: line too long
12
+ # W505: doc line too long
13
+ # too long docstring due to long example blocks
14
+ E501,W505,
15
+ per-file-ignores =
16
+ # F401: module imported but unused
17
+ # intentionally unused imports
18
+ __init__.py: F401
19
+ # F401: module imported but unused
20
+ # F403: unable to detect undefined names
21
+ # F405: member mey be undefined, or defined from star imports
22
+ # members populated from optree
23
+ # E301: expected 1 blank line
24
+ # E302: expected 2 blank lines
25
+ # E305: expected 2 blank lines after class or function definition
26
+ # E701: multiple statements on one line (colon)
27
+ # E704: multiple statements on one line (def)
28
+ # format by black
29
+ *.pyi: E301,E302,E305,E701,E704
30
+ exclude =
31
+ .git,
32
+ .vscode,
33
+ venv,
34
+ third-party,
35
+ __pycache__,
36
+ docs/source/conf.py,
37
+ build,
38
+ dist,
39
+ examples,
40
+ tests
.gitattributes CHANGED
@@ -1,35 +1,10 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ * text eol=lf
2
+ *.ipynb linguist-detectable=false
3
+ *.png filter=lfs diff=lfs merge=lfs -text
4
+ *.jpg filter=lfs diff=lfs merge=lfs -text
5
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
6
+ *.gif binary
7
+ *.pdf filter=lfs diff=lfs merge=lfs -text
8
+ *.ttc filter=lfs diff=lfs merge=lfs -text
9
+ *.svg filter=lfs diff=lfs merge=lfs -text
10
+ *.ico filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.gitignore ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##### Python.gitignore #####
2
+ # Byte-compiled / optimized / DLL files
3
+ __pycache__/
4
+ *.py[cod]
5
+ *$py.class
6
+
7
+ # C extensions
8
+ *.so
9
+
10
+ # Distribution / packaging
11
+ .Python
12
+ build/
13
+ develop-eggs/
14
+ dist/
15
+ downloads/
16
+ eggs/
17
+ .eggs/
18
+ lib/
19
+ lib64/
20
+ parts/
21
+ sdist/
22
+ var/
23
+ wheels/
24
+ wheelhouse/
25
+ share/python-wheels/
26
+ *.egg-info/
27
+ .installed.cfg
28
+ *.egg
29
+ MANIFEST
30
+ *.whl
31
+
32
+ # PyInstaller
33
+ # Usually these files are written by a python script from a template
34
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
35
+ *.manifest
36
+ *.spec
37
+
38
+ # Installer logs
39
+ pip-log.txt
40
+ pip-delete-this-directory.txt
41
+
42
+ # Unit test / coverage reports
43
+ htmlcov/
44
+ .tox/
45
+ .nox/
46
+ .coverage
47
+ .coverage.*
48
+ .cache
49
+ nosetests.xml
50
+ coverage.xml
51
+ *.cover
52
+ *.py,cover
53
+ .hypothesis/
54
+ .pytest_cache/
55
+ cover/
56
+
57
+ # Translations
58
+ *.mo
59
+ *.pot
60
+
61
+ # Django stuff:
62
+ *.log
63
+ local_settings.py
64
+ db.sqlite3
65
+ db.sqlite3-journal
66
+
67
+ # Flask stuff:
68
+ instance/
69
+ .webassets-cache
70
+
71
+ # Scrapy stuff:
72
+ .scrapy
73
+
74
+ # Sphinx documentation
75
+ docs/_build/
76
+ docs/source/_build/
77
+ _autosummary/
78
+
79
+ # PyBuilder
80
+ .pybuilder/
81
+ target/
82
+
83
+ # Jupyter Notebook
84
+ .ipynb_checkpoints
85
+
86
+ # IPython
87
+ profile_default/
88
+ ipython_config.py
89
+
90
+ # pyenv
91
+ # For a library or package, you might want to ignore these files since the code is
92
+ # intended to run in multiple environments; otherwise, check them in:
93
+ .python-version
94
+
95
+ # pipenv
96
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
97
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
98
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
99
+ # install all needed dependencies.
100
+ #Pipfile.lock
101
+
102
+ # poetry
103
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
104
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
105
+ # commonly ignored for libraries.
106
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
107
+ #poetry.lock
108
+
109
+ # pdm
110
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
111
+ #pdm.lock
112
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
113
+ # in version control.
114
+ # https://pdm.fming.dev/#use-with-ide
115
+ .pdm.toml
116
+
117
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
118
+ __pypackages__/
119
+
120
+ # Celery stuff
121
+ celerybeat-schedule
122
+ celerybeat.pid
123
+
124
+ # SageMath parsed files
125
+ *.sage.py
126
+
127
+ # Environments
128
+ .env
129
+ .venv
130
+ env/
131
+ venv/
132
+ ENV/
133
+ env.bak/
134
+ venv.bak/
135
+
136
+ # Spyder project settings
137
+ .spyderproject
138
+ .spyproject
139
+
140
+ # Rope project settings
141
+ .ropeproject
142
+
143
+ # mkdocs documentation
144
+ /site
145
+
146
+ # ruff
147
+ .ruff_cache/
148
+
149
+ # mypy
150
+ .mypy_cache/
151
+ .dmypy.json
152
+ dmypy.json
153
+
154
+ # Pyre type checker
155
+ .pyre/
156
+
157
+ # pytype static type analyzer
158
+ .pytype/
159
+
160
+ # Cython debug symbols
161
+ cython_debug/
162
+
163
+ # PyCharm
164
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
165
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
166
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
167
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
168
+ .idea/
169
+
170
+
171
+ ##### macOS.gitignore #####
172
+ # General
173
+ .DS_Store
174
+ .AppleDouble
175
+ .LSOverride
176
+
177
+ # Icon must end with two \r
178
+ Icon
179
+
180
+ # Thumbnails
181
+ ._*
182
+
183
+ # Files that might appear in the root of a volume
184
+ .DocumentRevisions-V100
185
+ .fseventsd
186
+ .Spotlight-V100
187
+ .TemporaryItems
188
+ .Trashes
189
+ .VolumeIcon.icns
190
+ .com.apple.timemachine.donotpresent
191
+
192
+ # Directories potentially created on remote AFP share
193
+ .AppleDB
194
+ .AppleDesktop
195
+ Network Trash Folder
196
+ Temporary Items
197
+ .apdisk
198
+
199
+
200
+ ##### Linux.gitignore #####
201
+ *~
202
+
203
+ # Temporary files which can be created if a process still has a handle open of a deleted file
204
+ .fuse_hidden*
205
+
206
+ # KDE directory preferences
207
+ .directory
208
+
209
+ # Linux trash folder which might appear on any partition or disk
210
+ .Trash-*
211
+
212
+ # .nfs files are created when an open file is removed but is still being accessed
213
+ .nfs*
214
+
215
+
216
+ ##### Windows.gitignore #####
217
+ # Windows thumbnail cache files
218
+ Thumbs.db
219
+ Thumbs.db:encryptable
220
+ ehthumbs.db
221
+ ehthumbs_vista.db
222
+
223
+ # Dump file
224
+ *.stackdump
225
+
226
+ # Folder config file
227
+ [Dd]esktop.ini
228
+
229
+ # Recycle Bin used on file shares
230
+ $RECYCLE.BIN/
231
+
232
+ # Windows Installer files
233
+ *.cab
234
+ *.msi
235
+ *.msix
236
+ *.msm
237
+ *.msp
238
+
239
+ # Windows shortcuts
240
+ *.lnk
241
+
242
+
243
+ ##### Archives.gitignore #####
244
+ # It's better to unpack these files and commit the raw source because
245
+ # git has its own built in compression methods.
246
+ *.7z
247
+ *.jar
248
+ *.rar
249
+ *.zip
250
+ *.gz
251
+ *.gzip
252
+ *.tgz
253
+ *.bzip
254
+ *.bzip2
255
+ *.bz2
256
+ *.xz
257
+ *.lzma
258
+ *.cab
259
+ *.xar
260
+
261
+ # Packing-only formats
262
+ *.iso
263
+ *.tar
264
+
265
+ # Package management formats
266
+ *.dmg
267
+ *.xpi
268
+ *.gem
269
+ *.egg
270
+ *.deb
271
+ *.rpm
272
+ *.msi
273
+ *.msm
274
+ *.msp
275
+ *.txz
276
+
277
+
278
+ ##### Xcode.gitignore #####
279
+ # Xcode
280
+ #
281
+ # gitignore contributors: remember to update Global/Xcode.gitignore, Objective-C.gitignore & Swift.gitignore
282
+
283
+ ## User settings
284
+ xcuserdata/
285
+
286
+ ## Compatibility with Xcode 8 and earlier (ignoring not required starting Xcode 9)
287
+ *.xcscmblueprint
288
+ *.xccheckout
289
+
290
+ ## Compatibility with Xcode 3 and earlier (ignoring not required starting Xcode 4)
291
+ build/
292
+ DerivedData/
293
+ *.moved-aside
294
+ *.pbxuser
295
+ !default.pbxuser
296
+ *.mode1v3
297
+ !default.mode1v3
298
+ *.mode2v3
299
+ !default.mode2v3
300
+ *.perspectivev3
301
+ !default.perspectivev3
302
+
303
+ ## Gcc Patch
304
+ /*.gcno
305
+
306
+
307
+ ##### JetBrains.gitignore #####
308
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
309
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
310
+
311
+ # User settings
312
+ .idea/*
313
+
314
+ # User-specific stuff
315
+ .idea/**/workspace.xml
316
+ .idea/**/tasks.xml
317
+ .idea/**/usage.statistics.xml
318
+ .idea/**/dictionaries
319
+ .idea/**/shelf
320
+
321
+ # Generated files
322
+ .idea/**/contentModel.xml
323
+
324
+ # Sensitive or high-churn files
325
+ .idea/**/dataSources/
326
+ .idea/**/dataSources.ids
327
+ .idea/**/dataSources.local.xml
328
+ .idea/**/sqlDataSources.xml
329
+ .idea/**/dynamic.xml
330
+ .idea/**/uiDesigner.xml
331
+ .idea/**/dbnavigator.xml
332
+
333
+ # Gradle
334
+ .idea/**/gradle.xml
335
+ .idea/**/libraries
336
+
337
+ # Gradle and Maven with auto-import
338
+ # When using Gradle or Maven with auto-import, you should exclude module files,
339
+ # since they will be recreated, and may cause churn. Uncomment if using
340
+ # auto-import.
341
+ # .idea/artifacts
342
+ # .idea/compiler.xml
343
+ # .idea/jarRepositories.xml
344
+ # .idea/modules.xml
345
+ # .idea/*.iml
346
+ # .idea/modules
347
+ # *.iml
348
+ # *.ipr
349
+
350
+ # CMake
351
+ cmake-build-*/
352
+
353
+ # Mongo Explorer plugin
354
+ .idea/**/mongoSettings.xml
355
+
356
+ # File-based project format
357
+ *.iws
358
+
359
+ # IntelliJ
360
+ out/
361
+
362
+ # mpeltonen/sbt-idea plugin
363
+ .idea_modules/
364
+
365
+ # JIRA plugin
366
+ atlassian-ide-plugin.xml
367
+
368
+ # Cursive Clojure plugin
369
+ .idea/replstate.xml
370
+
371
+ # Crashlytics plugin (for Android Studio and IntelliJ)
372
+ com_crashlytics_export_strings.xml
373
+ crashlytics.properties
374
+ crashlytics-build.properties
375
+ fabric.properties
376
+
377
+ # Editor-based Rest Client
378
+ .idea/httpRequests
379
+
380
+ # Android studio 3.1+ serialized cache file
381
+ .idea/caches/build_file_checksums.ser
382
+
383
+
384
+ ##### VisualStudioCode.gitignore #####
385
+ .vscode/*
386
+ # !.vscode/settings.json
387
+ # !.vscode/tasks.json
388
+ # !.vscode/launch.json
389
+ !.vscode/extensions.json
390
+ *.code-workspace
391
+
392
+ # Local History for Visual Studio Code
393
+ .history/
394
+
395
+
396
+ ##### Vim.gitignore #####
397
+ # Swap
398
+ .*.s[a-v][a-z]
399
+ !*.svg # comment out if you don't need vector files
400
+ .*.sw[a-p]
401
+ .s[a-rt-v][a-z]
402
+ .ss[a-gi-z]
403
+ .sw[a-p]
404
+
405
+ # Session
406
+ Session.vim
407
+ Sessionx.vim
408
+
409
+ # Temporary
410
+ .netrwhist
411
+ *~
412
+ # Auto-generated tag files
413
+ tags
414
+ # Persistent undo
415
+ [._]*.un~
.pre-commit-config.yaml ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # See https://pre-commit.com for more information
2
+ # See https://pre-commit.com/hooks.html for more hooks
3
+ ci:
4
+ skip: [pylint]
5
+ autofix_prs: true
6
+ autofix_commit_msg: "fix: [pre-commit.ci] auto fixes [...]"
7
+ autoupdate_commit_msg: "chore(pre-commit): [pre-commit.ci] autoupdate"
8
+ autoupdate_schedule: monthly
9
+ default_stages: [commit, push, manual]
10
+ repos:
11
+ - repo: https://github.com/pre-commit/pre-commit-hooks
12
+ rev: v4.5.0
13
+ hooks:
14
+ - id: check-symlinks
15
+ - id: destroyed-symlinks
16
+ - id: trailing-whitespace
17
+ - id: end-of-file-fixer
18
+ - id: check-yaml
19
+ - id: check-toml
20
+ - id: check-ast
21
+ - id: check-added-large-files
22
+ - id: check-merge-conflict
23
+ - id: check-executables-have-shebangs
24
+ - id: check-shebang-scripts-are-executable
25
+ - id: detect-private-key
26
+ - id: debug-statements
27
+ - id: double-quote-string-fixer
28
+ - repo: https://github.com/astral-sh/ruff-pre-commit
29
+ rev: v0.1.5
30
+ hooks:
31
+ - id: ruff
32
+ args: [--fix, --exit-non-zero-on-fix]
33
+ - repo: https://github.com/PyCQA/isort
34
+ rev: 5.12.0
35
+ hooks:
36
+ - id: isort
37
+ - repo: https://github.com/psf/black
38
+ rev: 23.11.0
39
+ hooks:
40
+ - id: black-jupyter
41
+ - repo: https://github.com/asottile/pyupgrade
42
+ rev: v3.15.0
43
+ hooks:
44
+ - id: pyupgrade
45
+ args: [--py38-plus] # sync with requires-python
46
+ exclude: |
47
+ (?x)(
48
+ ^images/
49
+ )
50
+ - repo: https://github.com/pycqa/flake8
51
+ rev: 6.1.0
52
+ hooks:
53
+ - id: flake8
54
+ additional_dependencies:
55
+ - flake8-bugbear
56
+ - flake8-comprehensions
57
+ - flake8-docstrings
58
+ - flake8-pyi
59
+ - flake8-simplify
60
+ exclude: |
61
+ (?x)(
62
+ ^images/
63
+ )
64
+ - repo: local
65
+ hooks:
66
+ - id: pylint
67
+ name: pylint
68
+ entry: pylint
69
+ language: system
70
+ types: [python]
71
+ require_serial: true
72
+ exclude: |
73
+ (?x)(
74
+ ^images/
75
+ )
.pylintrc ADDED
@@ -0,0 +1,629 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [MAIN]
2
+
3
+ # Analyse import fallback blocks. This can be used to support both Python 2 and
4
+ # 3 compatible code, which means that the block might have code that exists
5
+ # only in one or another interpreter, leading to false positives when analysed.
6
+ analyse-fallback-blocks=no
7
+
8
+ # Load and enable all available extensions. Use --list-extensions to see a list
9
+ # all available extensions.
10
+ #enable-all-extensions=
11
+
12
+ # In error mode, messages with a category besides ERROR or FATAL are
13
+ # suppressed, and no reports are done by default. Error mode is compatible with
14
+ # disabling specific errors.
15
+ #errors-only=
16
+
17
+ # Always return a 0 (non-error) status code, even if lint errors are found.
18
+ # This is primarily useful in continuous integration scripts.
19
+ #exit-zero=
20
+
21
+ # A comma-separated list of package or module names from where C extensions may
22
+ # be loaded. Extensions are loading into the active Python interpreter and may
23
+ # run arbitrary code.
24
+ extension-pkg-allow-list=
25
+
26
+ # A comma-separated list of package or module names from where C extensions may
27
+ # be loaded. Extensions are loading into the active Python interpreter and may
28
+ # run arbitrary code. (This is an alternative name to extension-pkg-allow-list
29
+ # for backward compatibility.)
30
+ extension-pkg-whitelist=
31
+
32
+ # Return non-zero exit code if any of these messages/categories are detected,
33
+ # even if score is above --fail-under value. Syntax same as enable. Messages
34
+ # specified are enabled, while categories only check already-enabled messages.
35
+ fail-on=
36
+
37
+ # Specify a score threshold under which the program will exit with error.
38
+ fail-under=10
39
+
40
+ # Interpret the stdin as a python script, whose filename needs to be passed as
41
+ # the module_or_package argument.
42
+ #from-stdin=
43
+
44
+ # Files or directories to be skipped. They should be base names, not paths.
45
+ ignore=CVS,.vscode,.history
46
+
47
+ # Add files or directories matching the regular expressions patterns to the
48
+ # ignore-list. The regex matches against paths and can be in Posix or Windows
49
+ # format. Because '\' represents the directory delimiter on Windows systems, it
50
+ # can't be used as an escape character.
51
+ ignore-paths=^images/$
52
+
53
+ # Files or directories matching the regular expression patterns are skipped.
54
+ # The regex matches against base names, not paths. The default value ignores
55
+ # Emacs file locks
56
+ ignore-patterns=^\.#
57
+
58
+ # List of module names for which member attributes should not be checked
59
+ # (useful for modules/projects where namespaces are manipulated during runtime
60
+ # and thus existing member attributes cannot be deduced by static analysis). It
61
+ # supports qualified module names, as well as Unix pattern matching.
62
+ ignored-modules=
63
+
64
+ # Python code to execute, usually for sys.path manipulation such as
65
+ # pygtk.require().
66
+ #init-hook=
67
+
68
+ # Use multiple processes to speed up Pylint. Specifying 0 will auto-detect the
69
+ # number of processors available to use, and will cap the count on Windows to
70
+ # avoid hangs.
71
+ jobs=0
72
+
73
+ # Control the amount of potential inferred values when inferring a single
74
+ # object. This can help the performance when dealing with large functions or
75
+ # complex, nested conditions.
76
+ limit-inference-results=100
77
+
78
+ # List of plugins (as comma separated values of python module names) to load,
79
+ # usually to register additional checkers.
80
+ load-plugins=
81
+
82
+ # Pickle collected data for later comparisons.
83
+ persistent=yes
84
+
85
+ # Minimum Python version to use for version dependent checks. Will default to
86
+ # the version used to run pylint.
87
+ py-version=3.8 # the lowest version we support (sync with requires-python in pyproject.toml)
88
+
89
+ # Discover python modules and packages in the file system subtree.
90
+ recursive=no
91
+
92
+ # When enabled, pylint would attempt to guess common misconfiguration and emit
93
+ # user-friendly hints instead of false-positive error messages.
94
+ suggestion-mode=yes
95
+
96
+ # Allow loading of arbitrary C extensions. Extensions are imported into the
97
+ # active Python interpreter and may run arbitrary code.
98
+ unsafe-load-any-extension=no
99
+
100
+ # In verbose mode, extra non-checker-related info will be displayed.
101
+ #verbose=
102
+
103
+
104
+ [BASIC]
105
+
106
+ # Naming style matching correct argument names.
107
+ argument-naming-style=snake_case
108
+
109
+ # Regular expression matching correct argument names. Overrides argument-
110
+ # naming-style. If left empty, argument names will be checked with the set
111
+ # naming style.
112
+ #argument-rgx=
113
+
114
+ # Naming style matching correct attribute names.
115
+ attr-naming-style=snake_case
116
+
117
+ # Regular expression matching correct attribute names. Overrides attr-naming-
118
+ # style. If left empty, attribute names will be checked with the set naming
119
+ # style.
120
+ #attr-rgx=
121
+
122
+ # Bad variable names which should always be refused, separated by a comma.
123
+ bad-names=foo,
124
+ bar,
125
+ baz,
126
+ toto,
127
+ tutu,
128
+ tata
129
+
130
+ # Bad variable names regexes, separated by a comma. If names match any regex,
131
+ # they will always be refused
132
+ bad-names-rgxs=
133
+
134
+ # Naming style matching correct class attribute names.
135
+ class-attribute-naming-style=any
136
+
137
+ # Regular expression matching correct class attribute names. Overrides class-
138
+ # attribute-naming-style. If left empty, class attribute names will be checked
139
+ # with the set naming style.
140
+ #class-attribute-rgx=
141
+
142
+ # Naming style matching correct class constant names.
143
+ class-const-naming-style=UPPER_CASE
144
+
145
+ # Regular expression matching correct class constant names. Overrides class-
146
+ # const-naming-style. If left empty, class constant names will be checked with
147
+ # the set naming style.
148
+ #class-const-rgx=
149
+
150
+ # Naming style matching correct class names.
151
+ class-naming-style=PascalCase
152
+
153
+ # Regular expression matching correct class names. Overrides class-naming-
154
+ # style. If left empty, class names will be checked with the set naming style.
155
+ #class-rgx=
156
+
157
+ # Naming style matching correct constant names.
158
+ const-naming-style=UPPER_CASE
159
+
160
+ # Regular expression matching correct constant names. Overrides const-naming-
161
+ # style. If left empty, constant names will be checked with the set naming
162
+ # style.
163
+ #const-rgx=
164
+
165
+ # Minimum line length for functions/classes that require docstrings, shorter
166
+ # ones are exempt.
167
+ docstring-min-length=-1
168
+
169
+ # Naming style matching correct function names.
170
+ function-naming-style=snake_case
171
+
172
+ # Regular expression matching correct function names. Overrides function-
173
+ # naming-style. If left empty, function names will be checked with the set
174
+ # naming style.
175
+ #function-rgx=
176
+
177
+ # Good variable names which should always be accepted, separated by a comma.
178
+ good-names=i,
179
+ j,
180
+ k,
181
+ ex,
182
+ Run,
183
+ _,
184
+ op,
185
+ fn,
186
+ f,
187
+ g,
188
+ p,
189
+ u,
190
+ t,
191
+ lr,
192
+ mu,
193
+ nu,
194
+ x,
195
+ y
196
+
197
+ # Good variable names regexes, separated by a comma. If names match any regex,
198
+ # they will always be accepted
199
+ good-names-rgxs=
200
+
201
+ # Include a hint for the correct naming format with invalid-name.
202
+ include-naming-hint=no
203
+
204
+ # Naming style matching correct inline iteration names.
205
+ inlinevar-naming-style=any
206
+
207
+ # Regular expression matching correct inline iteration names. Overrides
208
+ # inlinevar-naming-style. If left empty, inline iteration names will be checked
209
+ # with the set naming style.
210
+ #inlinevar-rgx=
211
+
212
+ # Naming style matching correct method names.
213
+ method-naming-style=snake_case
214
+
215
+ # Regular expression matching correct method names. Overrides method-naming-
216
+ # style. If left empty, method names will be checked with the set naming style.
217
+ #method-rgx=
218
+
219
+ # Naming style matching correct module names.
220
+ module-naming-style=snake_case
221
+
222
+ # Regular expression matching correct module names. Overrides module-naming-
223
+ # style. If left empty, module names will be checked with the set naming style.
224
+ #module-rgx=
225
+
226
+ # Colon-delimited sets of names that determine each other's naming style when
227
+ # the name regexes allow several styles.
228
+ name-group=
229
+
230
+ # Regular expression which should only match function or class names that do
231
+ # not require a docstring.
232
+ no-docstring-rgx=^_
233
+
234
+ # List of decorators that produce properties, such as abc.abstractproperty. Add
235
+ # to this list to register other decorators that produce valid properties.
236
+ # These decorators are taken in consideration only for invalid-name.
237
+ property-classes=abc.abstractproperty
238
+
239
+ # Regular expression matching correct type variable names. If left empty, type
240
+ # variable names will be checked with the set naming style.
241
+ #typevar-rgx=
242
+
243
+ # Naming style matching correct variable names.
244
+ variable-naming-style=snake_case
245
+
246
+ # Regular expression matching correct variable names. Overrides variable-
247
+ # naming-style. If left empty, variable names will be checked with the set
248
+ # naming style.
249
+ #variable-rgx=
250
+
251
+
252
+ [CLASSES]
253
+
254
+ # Warn about protected attribute access inside special methods
255
+ check-protected-access-in-special-methods=no
256
+
257
+ # List of method names used to declare (i.e. assign) instance attributes.
258
+ defining-attr-methods=__init__,
259
+ __new__,
260
+ setUp,
261
+ __post_init__
262
+
263
+ # List of member names, which should be excluded from the protected access
264
+ # warning.
265
+ exclude-protected=_asdict,
266
+ _fields,
267
+ _replace,
268
+ _source,
269
+ _make
270
+
271
+ # List of valid names for the first argument in a class method.
272
+ valid-classmethod-first-arg=cls
273
+
274
+ # List of valid names for the first argument in a metaclass class method.
275
+ valid-metaclass-classmethod-first-arg=cls
276
+
277
+
278
+ [DESIGN]
279
+
280
+ # List of regular expressions of class ancestor names to ignore when counting
281
+ # public methods (see R0903)
282
+ exclude-too-few-public-methods=
283
+
284
+ # List of qualified class names to ignore when counting class parents (see
285
+ # R0901)
286
+ ignored-parents=
287
+
288
+ # Maximum number of arguments for function / method.
289
+ max-args=5
290
+
291
+ # Maximum number of attributes for a class (see R0902).
292
+ max-attributes=7
293
+
294
+ # Maximum number of boolean expressions in an if statement (see R0916).
295
+ max-bool-expr=5
296
+
297
+ # Maximum number of branch for function / method body.
298
+ max-branches=12
299
+
300
+ # Maximum number of locals for function / method body.
301
+ max-locals=15
302
+
303
+ # Maximum number of parents for a class (see R0901).
304
+ max-parents=7
305
+
306
+ # Maximum number of public methods for a class (see R0904).
307
+ max-public-methods=20
308
+
309
+ # Maximum number of return / yield for function / method body.
310
+ max-returns=6
311
+
312
+ # Maximum number of statements in function / method body.
313
+ max-statements=50
314
+
315
+ # Minimum number of public methods for a class (see R0903).
316
+ min-public-methods=2
317
+
318
+
319
+ [EXCEPTIONS]
320
+
321
+ # Exceptions that will emit a warning when caught.
322
+ overgeneral-exceptions=builtins.BaseException,
323
+ builtins.Exception
324
+
325
+
326
+ [FORMAT]
327
+
328
+ # Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
329
+ expected-line-ending-format=
330
+
331
+ # Regexp for a line that is allowed to be longer than the limit.
332
+ ignore-long-lines=^\s*(# )?<?https?://\S+>?$
333
+
334
+ # Number of spaces of indent required inside a hanging or continued line.
335
+ indent-after-paren=4
336
+
337
+ # String used as indentation unit. This is usually " " (4 spaces) or "\t" (1
338
+ # tab).
339
+ indent-string=' '
340
+
341
+ # Maximum number of characters on a single line.
342
+ max-line-length=120
343
+
344
+ # Maximum number of lines in a module.
345
+ max-module-lines=1000
346
+
347
+ # Allow the body of a class to be on the same line as the declaration if body
348
+ # contains single statement.
349
+ single-line-class-stmt=no
350
+
351
+ # Allow the body of an if to be on the same line as the test if there is no
352
+ # else.
353
+ single-line-if-stmt=no
354
+
355
+
356
+ [IMPORTS]
357
+
358
+ # List of modules that can be imported at any level, not just the top level
359
+ # one.
360
+ allow-any-import-level=
361
+
362
+ # Allow wildcard imports from modules that define __all__.
363
+ allow-wildcard-with-all=no
364
+
365
+ # Deprecated modules which should not be used, separated by a comma.
366
+ deprecated-modules=
367
+
368
+ # Output a graph (.gv or any supported image format) of external dependencies
369
+ # to the given file (report RP0402 must not be disabled).
370
+ ext-import-graph=
371
+
372
+ # Output a graph (.gv or any supported image format) of all (i.e. internal and
373
+ # external) dependencies to the given file (report RP0402 must not be
374
+ # disabled).
375
+ import-graph=
376
+
377
+ # Output a graph (.gv or any supported image format) of internal dependencies
378
+ # to the given file (report RP0402 must not be disabled).
379
+ int-import-graph=
380
+
381
+ # Force import order to recognize a module as part of the standard
382
+ # compatibility libraries.
383
+ known-standard-library=
384
+
385
+ # Force import order to recognize a module as part of a third party library.
386
+ known-third-party=enchant
387
+
388
+ # Couples of modules and preferred modules, separated by a comma.
389
+ preferred-modules=
390
+
391
+
392
+ [LOGGING]
393
+
394
+ # The type of string formatting that logging methods do. `old` means using %
395
+ # formatting, `new` is for `{}` formatting.
396
+ logging-format-style=old
397
+
398
+ # Logging modules to check that the string format arguments are in logging
399
+ # function parameter format.
400
+ logging-modules=logging
401
+
402
+
403
+ [MESSAGES CONTROL]
404
+
405
+ # Only show warnings with the listed confidence levels. Leave empty to show
406
+ # all. Valid levels: HIGH, CONTROL_FLOW, INFERENCE, INFERENCE_FAILURE,
407
+ # UNDEFINED.
408
+ confidence=HIGH,
409
+ CONTROL_FLOW,
410
+ INFERENCE,
411
+ INFERENCE_FAILURE,
412
+ UNDEFINED
413
+
414
+ # Disable the message, report, category or checker with the given id(s). You
415
+ # can either give multiple identifiers separated by comma (,) or put this
416
+ # option multiple times (only on the command line, not in the configuration
417
+ # file where it should appear only once). You can also use "--disable=all" to
418
+ # disable everything first and then re-enable specific checks. For example, if
419
+ # you want to run only the similarities checker, you can use "--disable=all
420
+ # --enable=similarities". If you want to run only the classes checker, but have
421
+ # no Warning level messages displayed, use "--disable=all --enable=classes
422
+ # --disable=W".
423
+ disable=duplicate-code,
424
+ consider-using-from-import
425
+
426
+ # Enable the message, report, category or checker with the given id(s). You can
427
+ # either give multiple identifier separated by comma (,) or put this option
428
+ # multiple time (only on the command line, not in the configuration file where
429
+ # it should appear only once). See also the "--disable" option for examples.
430
+ enable=c-extension-no-member
431
+
432
+
433
+ [METHOD_ARGS]
434
+
435
+ # List of qualified names (i.e., library.method) which require a timeout
436
+ # parameter e.g. 'requests.api.get,requests.api.post'
437
+ timeout-methods=requests.api.delete,requests.api.get,requests.api.head,requests.api.options,requests.api.patch,requests.api.post,requests.api.put,requests.api.request
438
+
439
+
440
+ [MISCELLANEOUS]
441
+
442
+ # List of note tags to take in consideration, separated by a comma.
443
+ notes=FIXME,
444
+ XXX,
445
+ TODO
446
+
447
+ # Regular expression of note tags to take in consideration.
448
+ notes-rgx=
449
+
450
+
451
+ [REFACTORING]
452
+
453
+ # Maximum number of nested blocks for function / method body
454
+ max-nested-blocks=5
455
+
456
+ # Complete name of functions that never returns. When checking for
457
+ # inconsistent-return-statements if a never returning function is called then
458
+ # it will be considered as an explicit return statement and no message will be
459
+ # printed.
460
+ never-returning-functions=sys.exit,argparse.parse_error
461
+
462
+
463
+ [REPORTS]
464
+
465
+ # Python expression which should return a score less than or equal to 10. You
466
+ # have access to the variables 'fatal', 'error', 'warning', 'refactor',
467
+ # 'convention', and 'info' which contain the number of messages in each
468
+ # category, as well as 'statement' which is the total number of statements
469
+ # analyzed. This score is used by the global evaluation report (RP0004).
470
+ evaluation=max(0, 0 if fatal else 10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10))
471
+
472
+ # Template used to display messages. This is a python new-style format string
473
+ # used to format the message information. See doc for all details.
474
+ msg-template=
475
+
476
+ # Set the output format. Available formats are text, parseable, colorized, json
477
+ # and msvs (visual studio). You can also give a reporter class, e.g.
478
+ # mypackage.mymodule.MyReporterClass.
479
+ #output-format=
480
+
481
+ # Tells whether to display a full report or only the messages.
482
+ reports=no
483
+
484
+ # Activate the evaluation score.
485
+ score=yes
486
+
487
+
488
+ [SIMILARITIES]
489
+
490
+ # Comments are removed from the similarity computation
491
+ ignore-comments=yes
492
+
493
+ # Docstrings are removed from the similarity computation
494
+ ignore-docstrings=yes
495
+
496
+ # Imports are removed from the similarity computation
497
+ ignore-imports=yes
498
+
499
+ # Signatures are removed from the similarity computation
500
+ ignore-signatures=yes
501
+
502
+ # Minimum lines number of a similarity.
503
+ min-similarity-lines=4
504
+
505
+
506
+ [SPELLING]
507
+
508
+ # Limits count of emitted suggestions for spelling mistakes.
509
+ max-spelling-suggestions=4
510
+
511
+ # Spelling dictionary name. Available dictionaries: en_AU (hunspell), en_CA
512
+ # (hunspell), en_GB (hunspell), en_US (hunspell), en_ZA (hunspell).
513
+ spelling-dict=
514
+
515
+ # List of comma separated words that should be considered directives if they
516
+ # appear at the beginning of a comment and should not be checked.
517
+ spelling-ignore-comment-directives=fmt: on,fmt: off,noqa:,noqa,nosec,isort:skip,mypy:
518
+
519
+ # List of comma separated words that should not be checked.
520
+ spelling-ignore-words=
521
+
522
+ # A path to a file that contains the private dictionary; one word per line.
523
+ spelling-private-dict-file=docs/source/spelling_wordlist.txt
524
+
525
+ # Tells whether to store unknown words to the private dictionary (see the
526
+ # --spelling-private-dict-file option) instead of raising a message.
527
+ spelling-store-unknown-words=no
528
+
529
+
530
+ [STRING]
531
+
532
+ # This flag controls whether inconsistent-quotes generates a warning when the
533
+ # character used as a quote delimiter is used inconsistently within a module.
534
+ check-quote-consistency=no
535
+
536
+ # This flag controls whether the implicit-str-concat should generate a warning
537
+ # on implicit string concatenation in sequences defined over several lines.
538
+ check-str-concat-over-line-jumps=no
539
+
540
+
541
+ [TYPECHECK]
542
+
543
+ # List of decorators that produce context managers, such as
544
+ # contextlib.contextmanager. Add to this list to register other decorators that
545
+ # produce valid context managers.
546
+ contextmanager-decorators=contextlib.contextmanager
547
+
548
+ # List of members which are set dynamically and missed by pylint inference
549
+ # system, and so shouldn't trigger E1101 when accessed. Python regular
550
+ # expressions are accepted.
551
+ generated-members=numpy.*,
552
+ torch.*
553
+
554
+ # Tells whether missing members accessed in mixin class should be ignored. A
555
+ # class is considered mixin if its name matches the mixin-class-rgx option.
556
+ ignore-mixin-members=yes
557
+
558
+ # Tells whether to warn about missing members when the owner of the attribute
559
+ # is inferred to be None.
560
+ ignore-none=yes
561
+
562
+ # This flag controls whether pylint should warn about no-member and similar
563
+ # checks whenever an opaque object is returned when inferring. The inference
564
+ # can return multiple potential results while evaluating a Python object, but
565
+ # some branches might not be evaluated, which results in partial inference. In
566
+ # that case, it might be useful to still emit no-member and other checks for
567
+ # the rest of the inferred objects.
568
+ ignore-on-opaque-inference=yes
569
+
570
+ # List of symbolic message names to ignore for Mixin members.
571
+ ignored-checks-for-mixins=no-member,
572
+ not-async-context-manager,
573
+ not-context-manager,
574
+ attribute-defined-outside-init
575
+
576
+ # List of class names for which member attributes should not be checked (useful
577
+ # for classes with dynamically set attributes). This supports the use of
578
+ # qualified names.
579
+ ignored-classes=optparse.Values,thread._local,_thread._local,argparse.Namespace
580
+
581
+ # Show a hint with possible names when a member name was not found. The aspect
582
+ # of finding the hint is based on edit distance.
583
+ missing-member-hint=yes
584
+
585
+ # The minimum edit distance a name should have in order to be considered a
586
+ # similar match for a missing member name.
587
+ missing-member-hint-distance=1
588
+
589
+ # The total number of similar names that should be taken in consideration when
590
+ # showing a hint for a missing member.
591
+ missing-member-max-choices=1
592
+
593
+ # Regex pattern to define which classes are considered mixins.
594
+ mixin-class-rgx=.*[Mm]ixin
595
+
596
+ # List of decorators that change the signature of a decorated function.
597
+ signature-mutators=
598
+
599
+
600
+ [VARIABLES]
601
+
602
+ # List of additional names supposed to be defined in builtins. Remember that
603
+ # you should avoid defining new builtins when possible.
604
+ additional-builtins=
605
+
606
+ # Tells whether unused global variables should be treated as a violation.
607
+ allow-global-unused-variables=yes
608
+
609
+ # List of names allowed to shadow builtins
610
+ allowed-redefined-builtins=
611
+
612
+ # List of strings which can identify a callback function by name. A callback
613
+ # name must start or end with one of those strings.
614
+ callbacks=cb_,
615
+ _cb
616
+
617
+ # A regular expression matching the name of dummy variables (i.e. expected to
618
+ # not be used).
619
+ dummy-variables-rgx=_+$|(_[a-zA-Z0-9_]*[a-zA-Z0-9]+?$)|dummy|^ignored_|^unused_
620
+
621
+ # Argument names that match this expression will be ignored.
622
+ ignored-argument-names=_.*|^ignored_|^unused_
623
+
624
+ # Tells whether we should check for unused import in __init__ files.
625
+ init-import=no
626
+
627
+ # List of qualified module names which can have objects that can redefine
628
+ # builtins.
629
+ redefining-builtins-modules=six.moves,past.builtins,future.builtins,builtins,io
DeepSeek_VL2_paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a79c31356d7a353ef25df880d983527ed0843aa9b160e568942001f40630ddbe
3
+ size 5888873
LICENSE-CODE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 DeepSeek
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
LICENSE-MODEL ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DEEPSEEK LICENSE AGREEMENT
2
+
3
+ Version 1.0, 23 October 2023
4
+
5
+ Copyright (c) 2023 DeepSeek
6
+
7
+ Section I: PREAMBLE
8
+
9
+ Large generative models are being widely adopted and used, and have the potential to transform the way individuals conceive and benefit from AI or ML technologies.
10
+
11
+ Notwithstanding the current and potential benefits that these artifacts can bring to society at large, there are also concerns about potential misuses of them, either due to their technical limitations or ethical considerations.
12
+
13
+ In short, this license strives for both the open and responsible downstream use of the accompanying model. When it comes to the open character, we took inspiration from open source permissive licenses regarding the grant of IP rights. Referring to the downstream responsible use, we added use-based restrictions not permitting the use of the model in very specific scenarios, in order for the licensor to be able to enforce the license in case potential misuses of the Model may occur. At the same time, we strive to promote open and responsible research on generative models for content generation.
14
+
15
+ Even though downstream derivative versions of the model could be released under different licensing terms, the latter will always have to include - at minimum - the same use-based restrictions as the ones in the original license (this license). We believe in the intersection between open and responsible AI development; thus, this agreement aims to strike a balance between both in order to enable responsible open-science in the field of AI.
16
+
17
+ This License governs the use of the model (and its derivatives) and is informed by the model card associated with the model.
18
+
19
+ NOW THEREFORE, You and DeepSeek agree as follows:
20
+
21
+ 1. Definitions
22
+ "License" means the terms and conditions for use, reproduction, and Distribution as defined in this document.
23
+ "Data" means a collection of information and/or content extracted from the dataset used with the Model, including to train, pretrain, or otherwise evaluate the Model. The Data is not licensed under this License.
24
+ "Output" means the results of operating a Model as embodied in informational content resulting therefrom.
25
+ "Model" means any accompanying machine-learning based assemblies (including checkpoints), consisting of learnt weights, parameters (including optimizer states), corresponding to the model architecture as embodied in the Complementary Material, that have been trained or tuned, in whole or in part on the Data, using the Complementary Material.
26
+ "Derivatives of the Model" means all modifications to the Model, works based on the Model, or any other model which is created or initialized by transfer of patterns of the weights, parameters, activations or output of the Model, to the other model, in order to cause the other model to perform similarly to the Model, including - but not limited to - distillation methods entailing the use of intermediate data representations or methods based on the generation of synthetic data by the Model for training the other model.
27
+ "Complementary Material" means the accompanying source code and scripts used to define, run, load, benchmark or evaluate the Model, and used to prepare data for training or evaluation, if any. This includes any accompanying documentation, tutorials, examples, etc, if any.
28
+ "Distribution" means any transmission, reproduction, publication or other sharing of the Model or Derivatives of the Model to a third party, including providing the Model as a hosted service made available by electronic or other remote means - e.g. API-based or web access.
29
+ "DeepSeek" (or "we") means Beijing DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd., Hangzhou DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd. and/or any of their affiliates.
30
+ "You" (or "Your") means an individual or Legal Entity exercising permissions granted by this License and/or making use of the Model for whichever purpose and in any field of use, including usage of the Model in an end-use application - e.g. chatbot, translator, etc.
31
+ "Third Parties" means individuals or legal entities that are not under common control with DeepSeek or You.
32
+
33
+ Section II: INTELLECTUAL PROPERTY RIGHTS
34
+
35
+ Both copyright and patent grants apply to the Model, Derivatives of the Model and Complementary Material. The Model and Derivatives of the Model are subject to additional terms as described in Section III.
36
+
37
+ 2. Grant of Copyright License. Subject to the terms and conditions of this License, DeepSeek hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare, publicly display, publicly perform, sublicense, and distribute the Complementary Material, the Model, and Derivatives of the Model.
38
+
39
+ 3. Grant of Patent License. Subject to the terms and conditions of this License and where and as applicable, DeepSeek hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this paragraph) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Model and the Complementary Material, where such license applies only to those patent claims licensable by DeepSeek that are necessarily infringed by its contribution(s). If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Model and/or Complementary Material constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for the Model and/or works shall terminate as of the date such litigation is asserted or filed.
40
+
41
+
42
+ Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
43
+
44
+ 4. Distribution and Redistribution. You may host for Third Party remote access purposes (e.g. software-as-a-service), reproduce and distribute copies of the Model or Derivatives of the Model thereof in any medium, with or without modifications, provided that You meet the following conditions:
45
+ a. Use-based restrictions as referenced in paragraph 5 MUST be included as an enforceable provision by You in any type of legal agreement (e.g. a license) governing the use and/or distribution of the Model or Derivatives of the Model, and You shall give notice to subsequent users You Distribute to, that the Model or Derivatives of the Model are subject to paragraph 5. This provision does not apply to the use of Complementary Material.
46
+ b. You must give any Third Party recipients of the Model or Derivatives of the Model a copy of this License;
47
+ c. You must cause any modified files to carry prominent notices stating that You changed the files;
48
+ d. You must retain all copyright, patent, trademark, and attribution notices excluding those notices that do not pertain to any part of the Model, Derivatives of the Model.
49
+ e. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions - respecting paragraph 4.a. – for use, reproduction, or Distribution of Your modifications, or for any such Derivatives of the Model as a whole, provided Your use, reproduction, and Distribution of the Model otherwise complies with the conditions stated in this License.
50
+
51
+ 5. Use-based restrictions. The restrictions set forth in Attachment A are considered Use-based restrictions. Therefore You cannot use the Model and the Derivatives of the Model for the specified restricted uses. You may use the Model subject to this License, including only for lawful purposes and in accordance with the License. Use may include creating any content with, finetuning, updating, running, training, evaluating and/or reparametrizing the Model. You shall require all of Your users who use the Model or a Derivative of the Model to comply with the terms of this paragraph (paragraph 5).
52
+
53
+ 6. The Output You Generate. Except as set forth herein, DeepSeek claims no rights in the Output You generate using the Model. You are accountable for the Output you generate and its subsequent uses. No use of the output can contravene any provision as stated in the License.
54
+
55
+ Section IV: OTHER PROVISIONS
56
+
57
+ 7. Updates and Runtime Restrictions. To the maximum extent permitted by law, DeepSeek reserves the right to restrict (remotely or otherwise) usage of the Model in violation of this License.
58
+
59
+ 8. Trademarks and related. Nothing in this License permits You to make use of DeepSeek’ trademarks, trade names, logos or to otherwise suggest endorsement or misrepresent the relationship between the parties; and any rights not expressly granted herein are reserved by DeepSeek.
60
+
61
+ 9. Personal information, IP rights and related. This Model may contain personal information and works with IP rights. You commit to complying with applicable laws and regulations in the handling of personal information and the use of such works. Please note that DeepSeek's license granted to you to use the Model does not imply that you have obtained a legitimate basis for processing the related information or works. As an independent personal information processor and IP rights user, you need to ensure full compliance with relevant legal and regulatory requirements when handling personal information and works with IP rights that may be contained in the Model, and are willing to assume solely any risks and consequences that may arise from that.
62
+
63
+ 10. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, DeepSeek provides the Model and the Complementary Material on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Model, Derivatives of the Model, and the Complementary Material and assume any risks associated with Your exercise of permissions under this License.
64
+
65
+ 11. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall DeepSeek be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Model and the Complementary Material (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if DeepSeek has been advised of the possibility of such damages.
66
+
67
+ 12. Accepting Warranty or Additional Liability. While redistributing the Model, Derivatives of the Model and the Complementary Material thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of DeepSeek, and only if You agree to indemnify, defend, and hold DeepSeek harmless for any liability incurred by, or claims asserted against, DeepSeek by reason of your accepting any such warranty or additional liability.
68
+
69
+ 13. If any provision of this License is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein.
70
+
71
+ 14. Governing Law and Jurisdiction. This agreement will be governed and construed under PRC laws without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this agreement. The courts located in the domicile of Hangzhou DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd. shall have exclusive jurisdiction of any dispute arising out of this agreement.
72
+
73
+ END OF TERMS AND CONDITIONS
74
+
75
+ Attachment A
76
+
77
+ Use Restrictions
78
+
79
+ You agree not to use the Model or Derivatives of the Model:
80
+
81
+ - In any way that violates any applicable national or international law or regulation or infringes upon the lawful rights and interests of any third party;
82
+ - For military use in any way;
83
+ - For the purpose of exploiting, harming or attempting to exploit or harm minors in any way;
84
+ - To generate or disseminate verifiably false information and/or content with the purpose of harming others;
85
+ - To generate or disseminate inappropriate content subject to applicable regulatory requirements;
86
+ - To generate or disseminate personal identifiable information without due authorization or for unreasonable use;
87
+ - To defame, disparage or otherwise harass others;
88
+ - For fully automated decision making that adversely impacts an individual’s legal rights or otherwise creates or modifies a binding, enforceable obligation;
89
+ - For any use intended to or which has the effect of discriminating against or harming individuals or groups based on online or offline social behavior or known or predicted personal or personality characteristics;
90
+ - To exploit any of the vulnerabilities of a specific group of persons based on their age, social, physical or mental characteristics, in order to materially distort the behavior of a person pertaining to that group in a manner that causes or is likely to cause that person or another person physical or psychological harm;
91
+ - For any use intended to or which has the effect of discriminating against individuals or groups based on legally protected characteristics or categories.
Makefile ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ print-% : ; @echo $* = $($*)
2
+ PROJECT_NAME = DeepSeek-VL
3
+ COPYRIGHT = "DeepSeek."
4
+ PROJECT_PATH = deepseek_vl
5
+ SHELL = /bin/bash
6
+ SOURCE_FOLDERS = deepseek_vl
7
+ PYTHON_FILES = $(shell find $(SOURCE_FOLDERS) -type f -name "*.py" -o -name "*.pyi") cli_chat.py inference.py
8
+ COMMIT_HASH = $(shell git log -1 --format=%h)
9
+ PATH := $(HOME)/go/bin:$(PATH)
10
+ PYTHON ?= $(shell command -v python3 || command -v python)
11
+ PYTESTOPTS ?=
12
+
13
+ .PHONY: default
14
+ default: install
15
+
16
+ # Tools Installation
17
+
18
+ check_pip_install = $(PYTHON) -m pip show $(1) &>/dev/null || (cd && $(PYTHON) -m pip install $(1) --upgrade)
19
+ check_pip_install_extra = $(PYTHON) -m pip show $(1) &>/dev/null || (cd && $(PYTHON) -m pip install $(2) --upgrade)
20
+
21
+ pylint-install:
22
+ $(call check_pip_install_extra,pylint,pylint[spelling])
23
+ $(call check_pip_install,pyenchant)
24
+
25
+ flake8-install:
26
+ $(call check_pip_install,flake8)
27
+ $(call check_pip_install,flake8-bugbear)
28
+ $(call check_pip_install,flake8-comprehensions)
29
+ $(call check_pip_install,flake8-docstrings)
30
+ $(call check_pip_install,flake8-pyi)
31
+ $(call check_pip_install,flake8-simplify)
32
+
33
+ py-format-install:
34
+ $(call check_pip_install,isort)
35
+ $(call check_pip_install_extra,black,black[jupyter])
36
+
37
+ ruff-install:
38
+ $(call check_pip_install,ruff)
39
+
40
+ mypy-install:
41
+ $(call check_pip_install,mypy)
42
+
43
+ pre-commit-install:
44
+ $(call check_pip_install,pre-commit)
45
+ $(PYTHON) -m pre_commit install --install-hooks
46
+
47
+ go-install:
48
+ # requires go >= 1.16
49
+ command -v go || (sudo apt-get install -y golang && sudo ln -sf /usr/lib/go/bin/go /usr/bin/go)
50
+
51
+ addlicense-install: go-install
52
+ command -v addlicense || go install github.com/google/addlicense@latest
53
+
54
+ addlicense: addlicense-install
55
+ addlicense -c $(COPYRIGHT) -ignore tests/coverage.xml -l mit -y 2023-$(shell date +"%Y") -check $(SOURCE_FOLDERS)
56
+
57
+ # Python linters
58
+
59
+ pylint: pylint-install
60
+ $(PYTHON) -m pylint $(PROJECT_PATH)
61
+
62
+ flake8: flake8-install
63
+ $(PYTHON) -m flake8 --count --show-source --statistics
64
+
65
+ py-format: py-format-install
66
+ $(PYTHON) -m isort --project $(PROJECT_PATH) --check $(PYTHON_FILES) && \
67
+ $(PYTHON) -m black --check $(PYTHON_FILES)
68
+
69
+ ruff: ruff-install
70
+ $(PYTHON) -m ruff check .
71
+
72
+ ruff-fix: ruff-install
73
+ $(PYTHON) -m ruff check . --fix --exit-non-zero-on-fix
74
+
75
+ mypy: mypy-install
76
+ $(PYTHON) -m mypy $(PROJECT_PATH) --install-types --non-interactive
77
+
78
+ pre-commit: pre-commit-install
79
+ $(PYTHON) -m pre_commit run --all-files
80
+
81
+ # Utility functions
82
+
83
+ lint: ruff flake8 py-format mypy pylint addlicense
84
+
85
+ format: py-format-install ruff-install addlicense-install
86
+ $(PYTHON) -m isort --project $(PROJECT_PATH) $(PYTHON_FILES)
87
+ $(PYTHON) -m black $(PYTHON_FILES)
88
+ $(PYTHON) -m ruff check . --fix --exit-zero
89
+ addlicense -c $(COPYRIGHT) -ignore tests/coverage.xml -l mit -y 2023-$(shell date +"%Y") $(SOURCE_FOLDERS) cli_chat.py inference.py
90
+
91
+ clean-py:
92
+ find . -type f -name '*.py[co]' -delete
93
+ find . -depth -type d -name "__pycache__" -exec rm -r "{}" +
94
+ find . -depth -type d -name ".ruff_cache" -exec rm -r "{}" +
95
+ find . -depth -type d -name ".mypy_cache" -exec rm -r "{}" +
96
+
97
+ clean: clean-py
README.md ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!-- markdownlint-disable first-line-h1 -->
2
+ <!-- markdownlint-disable html -->
3
+ <!-- markdownlint-disable no-duplicate-header -->
4
+
5
+ <div align="center">
6
+ <img src="images/logo.svg" width="60%" alt="DeepSeek LLM" />
7
+ </div>
8
+ <hr>
9
+ <div align="center">
10
+
11
+ <a href="https://www.deepseek.com/" target="_blank">
12
+ <img alt="Homepage" src="images/badge.svg" />
13
+ </a>
14
+ <a href="" target="_blank">
15
+ <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20VL-536af5?color=536af5&logoColor=white" />
16
+ </a>
17
+ <a href="https://huggingface.co/deepseek-ai" target="_blank">
18
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
19
+ </a>
20
+
21
+ </div>
22
+
23
+
24
+ <div align="center">
25
+
26
+ <a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
27
+ <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" />
28
+ </a>
29
+ <a href="images/qr.jpeg" target="_blank">
30
+ <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" />
31
+ </a>
32
+ <a href="https://twitter.com/deepseek_ai" target="_blank">
33
+ <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" />
34
+ </a>
35
+
36
+ </div>
37
+
38
+ <div align="center">
39
+
40
+ <a href="LICENSE-CODE">
41
+ <img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53">
42
+ </a>
43
+ <a href="LICENSE-MODEL">
44
+ <img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53">
45
+ </a>
46
+ </div>
47
+
48
+
49
+ <p align="center">
50
+ <a href="https://github.com/deepseek-ai/DeepSeek-VL2/tree/main?tab=readme-ov-file#3-model-download"><b>📥 Model Download</b></a> |
51
+ <a href="https://github.com/deepseek-ai/DeepSeek-VL2/tree/main?tab=readme-ov-file#4-quick-start"><b>⚡ Quick Start</b></a> |
52
+ <a href="https://github.com/deepseek-ai/DeepSeek-VL2/tree/main?tab=readme-ov-file#5-license"><b>📜 License</b></a> |
53
+ <a href="https://github.com/deepseek-ai/DeepSeek-VL2/tree/main?tab=readme-ov-file#6-citation"><b>📖 Citation</b></a> <br>
54
+ <a href="./DeepSeek_VL2_paper.pdf"><b>📄 Paper Link</b></a> |
55
+ <a href="https://arxiv.org/abs/2412.10302"><b>📄 Arxiv Paper Link</b></a> |
56
+ <a href=""><b>👁️ Demo</b></a>
57
+ </p>
58
+
59
+ ## 1. Introduction
60
+
61
+ Introducing DeepSeek-VL2, an advanced series of large Mixture-of-Experts (MoE) Vision-Language Models that significantly improves upon its predecessor, DeepSeek-VL. DeepSeek-VL2 demonstrates superior capabilities across various tasks, including but not limited to visual question answering, optical character recognition, document/table/chart understanding, and visual grounding. Our model series is composed of three variants: DeepSeek-VL2-Tiny, DeepSeek-VL2-Small and DeepSeek-VL2, with 1.0B, 2.8B and 4.5B activated parameters respectively.
62
+ DeepSeek-VL2 achieves competitive or state-of-the-art performance with similar or fewer activated parameters compared to existing open-source dense and MoE-based models.
63
+
64
+
65
+ [DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding]()
66
+
67
+ Zhiyu Wu*, Xiaokang Chen*, Zizheng Pan*, Xingchao Liu*, Wen Liu**, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao, Yisong Wang, Chong Ruan*** (* Equal Contribution, ** Project Lead, *** Corresponding author)
68
+
69
+ ![](./images/vl2_teaser.jpeg)
70
+
71
+ ## 2. Release
72
+ ✅ <b>2024-12-25</b>: Gradio Demo Example, Incremental Prefilling and VLMEvalKit Support.
73
+
74
+ ✅ <b>2024-12-13</b>: DeepSeek-VL2 family released, including <code>DeepSeek-VL2-tiny</code>, <code>DeepSeek-VL2-small</code>, <code>DeepSeek-VL2</code>.
75
+
76
+ ## 3. Model Download
77
+
78
+ We release the DeepSeek-VL2 family, including <code>DeepSeek-VL2-tiny</code>, <code>DeepSeek-VL2-small</code>, <code>DeepSeek-VL2</code>.
79
+ To support a broader and more diverse range of research within both academic and commercial communities.
80
+ Please note that the use of this model is subject to the terms outlined in [License section](#5-license).
81
+
82
+ ### Huggingface
83
+
84
+ | Model | Sequence Length | Download |
85
+ |--------------|-----------------|-----------------------------------------------------------------------------|
86
+ | DeepSeek-VL2-tiny | 4096 | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/deepseek-vl2-tiny) |
87
+ | DeepSeek-VL2-small | 4096 | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/deepseek-vl2-small) |
88
+ | DeepSeek-VL2 | 4096 | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/deepseek-vl2) |
89
+
90
+
91
+ ## 4. Quick Start
92
+
93
+ ### Installation
94
+
95
+ On the basis of `Python >= 3.8` environment, install the necessary dependencies by running the following command:
96
+
97
+ ```shell
98
+ pip install -e .
99
+ ```
100
+
101
+ ### Simple Inference Example with One Image
102
+
103
+ **Note: You may need 80GB GPU memory to run this script with deepseek-vl2-small and even larger for deepseek-vl2.**
104
+
105
+ ```python
106
+ import torch
107
+ from transformers import AutoModelForCausalLM
108
+
109
+ from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM
110
+ from deepseek_vl2.utils.io import load_pil_images
111
+
112
+
113
+ # specify the path to the model
114
+ model_path = "deepseek-ai/deepseek-vl2-tiny"
115
+ vl_chat_processor: DeepseekVLV2Processor = DeepseekVLV2Processor.from_pretrained(model_path)
116
+ tokenizer = vl_chat_processor.tokenizer
117
+
118
+ vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
119
+ vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
120
+
121
+ ## single image conversation example
122
+ ## Please note that <|ref|> and <|/ref|> are designed specifically for the object localization feature. These special tokens are not required for normal conversations.
123
+ ## If you would like to experience the grounded captioning functionality (responses that include both object localization and reasoning), you need to add the special token <|grounding|> at the beginning of the prompt. Examples could be found in Figure 9 of our paper.
124
+ conversation = [
125
+ {
126
+ "role": "<|User|>",
127
+ "content": "<image>\n<|ref|>The giraffe at the back.<|/ref|>.",
128
+ "images": ["./images/visual_grounding_1.jpeg"],
129
+ },
130
+ {"role": "<|Assistant|>", "content": ""},
131
+ ]
132
+
133
+ # load images and prepare for inputs
134
+ pil_images = load_pil_images(conversation)
135
+ prepare_inputs = vl_chat_processor(
136
+ conversations=conversation,
137
+ images=pil_images,
138
+ force_batchify=True,
139
+ system_prompt=""
140
+ ).to(vl_gpt.device)
141
+
142
+ # run image encoder to get the image embeddings
143
+ inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
144
+
145
+ # run the model to get the response
146
+ outputs = vl_gpt.language.generate(
147
+ inputs_embeds=inputs_embeds,
148
+ attention_mask=prepare_inputs.attention_mask,
149
+ pad_token_id=tokenizer.eos_token_id,
150
+ bos_token_id=tokenizer.bos_token_id,
151
+ eos_token_id=tokenizer.eos_token_id,
152
+ max_new_tokens=512,
153
+ do_sample=False,
154
+ use_cache=True
155
+ )
156
+
157
+ answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=False)
158
+ print(f"{prepare_inputs['sft_format'][0]}", answer)
159
+ ```
160
+
161
+ And the output is something like:
162
+ ```
163
+ <|User|>: <image>
164
+ <|ref|>The giraffe at the back.<|/ref|>.
165
+
166
+ <|Assistant|>: <|ref|>The giraffe at the back.<|/ref|><|det|>[[580, 270, 999, 900]]<|/det|><|end▁of▁sentence|>
167
+ ```
168
+
169
+ ### Simple Inference Example with Multiple Images
170
+
171
+ **Note: You may need 80GB GPU memory to run this script with deepseek-vl2-small and even larger for deepseek-vl2.**
172
+
173
+ ```python
174
+ import torch
175
+ from transformers import AutoModelForCausalLM
176
+
177
+ from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM
178
+ from deepseek_vl2.utils.io import load_pil_images
179
+
180
+
181
+ # specify the path to the model
182
+ model_path = "deepseek-ai/deepseek-vl2-tiny"
183
+ vl_chat_processor: DeepseekVLV2Processor = DeepseekVLV2Processor.from_pretrained(model_path)
184
+ tokenizer = vl_chat_processor.tokenizer
185
+
186
+ vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
187
+ vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
188
+
189
+ # multiple images/interleaved image-text
190
+ conversation = [
191
+ {
192
+ "role": "<|User|>",
193
+ "content": "This is image_1: <image>\n"
194
+ "This is image_2: <image>\n"
195
+ "This is image_3: <image>\n Can you tell me what are in the images?",
196
+ "images": [
197
+ "images/multi_image_1.jpeg",
198
+ "images/multi_image_2.jpeg",
199
+ "images/multi_image_3.jpeg",
200
+ ],
201
+ },
202
+ {"role": "<|Assistant|>", "content": ""}
203
+ ]
204
+
205
+ # load images and prepare for inputs
206
+ pil_images = load_pil_images(conversation)
207
+ prepare_inputs = vl_chat_processor(
208
+ conversations=conversation,
209
+ images=pil_images,
210
+ force_batchify=True,
211
+ system_prompt=""
212
+ ).to(vl_gpt.device)
213
+
214
+ # run image encoder to get the image embeddings
215
+ inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
216
+
217
+ # run the model to get the response
218
+ outputs = vl_gpt.language.generate(
219
+ inputs_embeds=inputs_embeds,
220
+ attention_mask=prepare_inputs.attention_mask,
221
+ pad_token_id=tokenizer.eos_token_id,
222
+ bos_token_id=tokenizer.bos_token_id,
223
+ eos_token_id=tokenizer.eos_token_id,
224
+ max_new_tokens=512,
225
+ do_sample=False,
226
+ use_cache=True
227
+ )
228
+
229
+ answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=False)
230
+ print(f"{prepare_inputs['sft_format'][0]}", answer)
231
+ ```
232
+
233
+ And the output is something like:
234
+ ```
235
+ <|User|>: This is image_1: <image>
236
+ This is image_2: <image>
237
+ This is image_3: <image>
238
+ Can you tell me what are in the images?
239
+
240
+ <|Assistant|>: The images show three different types of vegetables. Image_1 features carrots, which are orange with green tops. Image_2 displays corn cobs, which are yellow with green husks. Image_3 contains raw pork ribs, which are pinkish-red with some marbling.<|end▁of▁sentence|>
241
+ ```
242
+
243
+ ### Simple Inference Example with Incremental Prefilling
244
+
245
+ **Note: We use incremental prefilling to inference within 40GB GPU using deepseek-vl2-small.**
246
+
247
+ ```python
248
+ import torch
249
+ from transformers import AutoModelForCausalLM
250
+
251
+ from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM
252
+ from deepseek_vl2.utils.io import load_pil_images
253
+
254
+
255
+ # specify the path to the model
256
+ model_path = "deepseek-ai/deepseek-vl2-small"
257
+ vl_chat_processor: DeepseekVLV2Processor = DeepseekVLV2Processor.from_pretrained(model_path)
258
+ tokenizer = vl_chat_processor.tokenizer
259
+
260
+ vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
261
+ vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
262
+
263
+ # multiple images/interleaved image-text
264
+ conversation = [
265
+ {
266
+ "role": "<|User|>",
267
+ "content": "This is image_1: <image>\n"
268
+ "This is image_2: <image>\n"
269
+ "This is image_3: <image>\n Can you tell me what are in the images?",
270
+ "images": [
271
+ "images/multi_image_1.jpeg",
272
+ "images/multi_image_2.jpeg",
273
+ "images/multi_image_3.jpeg",
274
+ ],
275
+ },
276
+ {"role": "<|Assistant|>", "content": ""}
277
+ ]
278
+
279
+ # load images and prepare for inputs
280
+ pil_images = load_pil_images(conversation)
281
+ prepare_inputs = vl_chat_processor(
282
+ conversations=conversation,
283
+ images=pil_images,
284
+ force_batchify=True,
285
+ system_prompt=""
286
+ ).to(vl_gpt.device)
287
+
288
+ with torch.no_grad():
289
+ # run image encoder to get the image embeddings
290
+ inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
291
+
292
+ # incremental_prefilling when using 40G GPU for vl2-small
293
+ inputs_embeds, past_key_values = vl_gpt.incremental_prefilling(
294
+ input_ids=prepare_inputs.input_ids,
295
+ images=prepare_inputs.images,
296
+ images_seq_mask=prepare_inputs.images_seq_mask,
297
+ images_spatial_crop=prepare_inputs.images_spatial_crop,
298
+ attention_mask=prepare_inputs.attention_mask,
299
+ chunk_size=512 # prefilling size
300
+ )
301
+
302
+ # run the model to get the response
303
+ outputs = vl_gpt.generate(
304
+ inputs_embeds=inputs_embeds,
305
+ input_ids=prepare_inputs.input_ids,
306
+ images=prepare_inputs.images,
307
+ images_seq_mask=prepare_inputs.images_seq_mask,
308
+ images_spatial_crop=prepare_inputs.images_spatial_crop,
309
+ attention_mask=prepare_inputs.attention_mask,
310
+ past_key_values=past_key_values,
311
+
312
+ pad_token_id=tokenizer.eos_token_id,
313
+ bos_token_id=tokenizer.bos_token_id,
314
+ eos_token_id=tokenizer.eos_token_id,
315
+ max_new_tokens=512,
316
+
317
+ do_sample=False,
318
+ use_cache=True,
319
+ )
320
+
321
+ answer = tokenizer.decode(outputs[0][len(prepare_inputs.input_ids[0]):].cpu().tolist(), skip_special_tokens=False)
322
+
323
+ print(f"{prepare_inputs['sft_format'][0]}", answer)
324
+ ```
325
+
326
+ And the output is something like:
327
+ ```
328
+ <|User|>: This is image_1: <image>
329
+ This is image_2: <image>
330
+ This is image_3: <image>
331
+ Can you tell me what are in the images?
332
+
333
+ <|Assistant|>: The first image contains carrots. The second image contains corn. The third image contains meat.<|end▁of▁sentence|>
334
+ ```
335
+
336
+ ### Full Inference Example
337
+ ```shell
338
+ # without incremental prefilling
339
+ CUDA_VISIBLE_DEVICES=0 python inference.py --model_path "deepseek-ai/deepseek-vl2"
340
+
341
+ # with incremental prefilling, when using 40G GPU for vl2-small
342
+ CUDA_VISIBLE_DEVICES=0 python inference.py --model_path "deepseek-ai/deepseek-vl2-small" --chunk_size 512
343
+
344
+ ```
345
+
346
+
347
+ ### Gradio Demo
348
+
349
+ * Install the necessary dependencies:
350
+ ```shell
351
+ pip install -e .[gradio]
352
+ ```
353
+
354
+ * then run the following command:
355
+
356
+ ```shell
357
+ # vl2-tiny, 3.37B-MoE in total, activated 1B, can be run on a single GPU < 40GB
358
+ CUDA_VISIBLE_DEVICES=2 python web_demo.py \
359
+ --model_name "deepseek-ai/deepseek-vl2-tiny" \
360
+ --port 37914
361
+
362
+
363
+ # vl2-small, 16.1B-MoE in total, activated 2.4B
364
+ # If run on A100 40GB GPU, you need to set the `--chunk_size 512` for incremental prefilling for saving memory and it might be slow.
365
+ # If run on > 40GB GPU, you can ignore the `--chunk_size 512` for faster response.
366
+ CUDA_VISIBLE_DEVICES=2 python web_demo.py \
367
+ --model_name "deepseek-ai/deepseek-vl2-small" \
368
+ --port 37914 \
369
+ --chunk_size 512
370
+
371
+ # # vl27.5-MoE in total, activated 4.2B
372
+ CUDA_VISIBLE_DEVICES=2 python web_demo.py \
373
+ --model_name "deepseek-ai/deepseek-vl2" \
374
+ --port 37914
375
+ ```
376
+
377
+ * **Important**: This is a basic and native demo implementation without any deployment optimizations, which may result in slower performance. For production environments, consider using optimized deployment solutions, such as vllm, sglang, lmdeploy, etc. These optimizations will help achieve faster response times and better cost efficiency.
378
+
379
+ ## 5. License
380
+
381
+ This code repository is licensed under [MIT License](./LICENSE-CODE). The use of DeepSeek-VL2 models is subject to [DeepSeek Model License](./LICENSE-MODEL). DeepSeek-VL2 series supports commercial use.
382
+
383
+ ## 6. Citation
384
+
385
+ ```
386
+ @misc{wu2024deepseekvl2mixtureofexpertsvisionlanguagemodels,
387
+ title={DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding},
388
+ author={Zhiyu Wu and Xiaokang Chen and Zizheng Pan and Xingchao Liu and Wen Liu and Damai Dai and Huazuo Gao and Yiyang Ma and Chengyue Wu and Bingxuan Wang and Zhenda Xie and Yu Wu and Kai Hu and Jiawei Wang and Yaofeng Sun and Yukun Li and Yishi Piao and Kang Guan and Aixin Liu and Xin Xie and Yuxiang You and Kai Dong and Xingkai Yu and Haowei Zhang and Liang Zhao and Yisong Wang and Chong Ruan},
389
+ year={2024},
390
+ eprint={2412.10302},
391
+ archivePrefix={arXiv},
392
+ primaryClass={cs.CV},
393
+ url={https://arxiv.org/abs/2412.10302},
394
+ }
395
+ ```
396
+
397
+ ## 7. Contact
398
+
399
+ If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com).
deepseek_vl2/__init__.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+
21
+ # check if python version is above 3.10
22
+ import sys
23
+
24
+ if sys.version_info >= (3, 10):
25
+ print("Python version is above 3.10, patching the collections module.")
26
+ # Monkey patch collections
27
+ import collections
28
+ import collections.abc
29
+
30
+ for type_name in collections.abc.__all__:
31
+ setattr(collections, type_name, getattr(collections.abc, type_name))
deepseek_vl2/models/__init__.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from .processing_deepseek_vl_v2 import DeepseekVLV2Processor
21
+ from .modeling_deepseek_vl_v2 import DeepseekVLV2ForCausalLM
22
+
23
+ __all__ = [
24
+ "DeepseekVLV2Processor",
25
+ "DeepseekVLV2ForCausalLM",
26
+ ]
deepseek_vl2/models/configuration_deepseek.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV2Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V2 with multi-latent attention.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 102400):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV2Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_attention_heads (`int`, *optional*, defaults to 32):
30
+ Number of attention heads for each attention layer in the Transformer decoder.
31
+ n_shared_experts (`int`, *optional*, defaults to None):
32
+ Number of shared experts, None means dense model.
33
+ n_routed_experts (`int`, *optional*, defaults to None):
34
+ Number of routed experts, None means dense model.
35
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
36
+ Scaling factor or routed experts.
37
+ topk_method (`str`, *optional*, defaults to `gready`):
38
+ Topk method used in routed gate.
39
+ n_group (`int`, *optional*, defaults to None):
40
+ Number of groups for routed experts.
41
+ topk_group (`int`, *optional*, defaults to None):
42
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
43
+ num_experts_per_tok (`int`, *optional*, defaults to None):
44
+ Number of selected experts, None means dense model.
45
+ moe_layer_freq (`int`, *optional*, defaults to 1):
46
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
47
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
48
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
49
+ \--k dense layers--/
50
+ norm_topk_prob (`bool`, *optional*, defaults to False):
51
+ Whether to normalize the weights of the routed experts.
52
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
53
+ Method of computing expert weights.
54
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
55
+ Auxiliary loss weight coefficient.
56
+ seq_aux = (`bool`, *optional*, defaults to True):
57
+ Whether to compute the auxiliary loss for each individual sample.
58
+ num_key_value_heads (`int`, *optional*):
59
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
60
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
61
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
62
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
63
+ by meanpooling all the original heads within that group. For more details checkout [this
64
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
65
+ `num_attention_heads`.
66
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
67
+ The non-linear activation function (function or string) in the decoder.
68
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
69
+ The maximum sequence length that this model might ever be used with.
70
+ initializer_range (`float`, *optional*, defaults to 0.02):
71
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
72
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
73
+ The epsilon used by the rms normalization layers.
74
+ use_cache (`bool`, *optional*, defaults to `True`):
75
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
76
+ relevant if `config.is_decoder=True`.
77
+ pad_token_id (`int`, *optional*):
78
+ Padding token id.
79
+ bos_token_id (`int`, *optional*, defaults to 1):
80
+ Beginning of stream token id.
81
+ eos_token_id (`int`, *optional*, defaults to 2):
82
+ End of stream token id.
83
+ pretraining_tp (`int`, *optional*, defaults to 1):
84
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
85
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
86
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
87
+ issue](https://github.com/pytorch/pytorch/issues/76232).
88
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
89
+ Whether to tie weight embeddings
90
+ rope_theta (`float`, *optional*, defaults to 10000.0):
91
+ The base period of the RoPE embeddings.
92
+ rope_scaling (`Dict`, *optional*):
93
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
94
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
95
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
96
+ `max_position_embeddings` to the expected new maximum.
97
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
98
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
99
+ attention_dropout (`float`, *optional*, defaults to 0.0):
100
+ The dropout ratio for the attention probabilities.
101
+ use_mla (`bool`, *optional*, defaults to `True`): Use multi-latent attention or multi-head attention. If True,
102
+ the model will use multi-latent attention, otherwise, it will use multi-head attention.
103
+
104
+ ```python
105
+ >>> from transformers import DeepseekV2Model, DeepseekV2Config
106
+
107
+ >>> # Initializing a Deepseek-V2 style configuration
108
+ >>> configuration = DeepseekV2Config()
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "deepseek_v2"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=102400,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ moe_intermediate_size = 1407,
123
+ num_hidden_layers=30,
124
+ num_attention_heads=32,
125
+ num_key_value_heads=32,
126
+ n_shared_experts = None,
127
+ n_routed_experts = None,
128
+ ep_size = 1,
129
+ routed_scaling_factor = 1.0,
130
+ kv_lora_rank = 512,
131
+ q_lora_rank = 1536,
132
+ qk_rope_head_dim = 64,
133
+ v_head_dim = 128,
134
+ qk_nope_head_dim = 128,
135
+ topk_method = 'gready',
136
+ n_group = None,
137
+ topk_group = None,
138
+ num_experts_per_tok = None,
139
+ moe_layer_freq = 1,
140
+ first_k_dense_replace = 0,
141
+ norm_topk_prob = False,
142
+ scoring_func = 'softmax',
143
+ aux_loss_alpha = 0.001,
144
+ seq_aux = True,
145
+ hidden_act="silu",
146
+ max_position_embeddings=2048,
147
+ initializer_range=0.02,
148
+ rms_norm_eps=1e-6,
149
+ use_cache=True,
150
+ pad_token_id=None,
151
+ bos_token_id=100000,
152
+ eos_token_id=100001,
153
+ pretraining_tp=1,
154
+ tie_word_embeddings=False,
155
+ rope_theta=10000.0,
156
+ rope_scaling=None,
157
+ attention_bias=False,
158
+ attention_dropout=0.0,
159
+ use_mla=True,
160
+ **kwargs,
161
+ ):
162
+ self.vocab_size = vocab_size
163
+ self.max_position_embeddings = max_position_embeddings
164
+ self.hidden_size = hidden_size
165
+ self.intermediate_size = intermediate_size
166
+ self.moe_intermediate_size = moe_intermediate_size
167
+ self.num_hidden_layers = num_hidden_layers
168
+ self.num_attention_heads = num_attention_heads
169
+ self.n_shared_experts = n_shared_experts
170
+ self.n_routed_experts = n_routed_experts
171
+ self.ep_size = ep_size
172
+ self.routed_scaling_factor = routed_scaling_factor
173
+ self.kv_lora_rank = kv_lora_rank
174
+ self.q_lora_rank = q_lora_rank
175
+ self.qk_rope_head_dim = qk_rope_head_dim
176
+ self.v_head_dim = v_head_dim
177
+ self.qk_nope_head_dim = qk_nope_head_dim
178
+ self.topk_method = topk_method
179
+ self.n_group = n_group
180
+ self.topk_group = topk_group
181
+ self.num_experts_per_tok = num_experts_per_tok
182
+ self.moe_layer_freq = moe_layer_freq
183
+ self.first_k_dense_replace = first_k_dense_replace
184
+ self.norm_topk_prob = norm_topk_prob
185
+ self.scoring_func = scoring_func
186
+ self.aux_loss_alpha = aux_loss_alpha
187
+ self.seq_aux = seq_aux
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = float(rms_norm_eps)
196
+ self.pretraining_tp = pretraining_tp
197
+ self.use_cache = use_cache
198
+ self.rope_theta = rope_theta
199
+ self.rope_scaling = rope_scaling
200
+ self.attention_bias = attention_bias
201
+ self.attention_dropout = attention_dropout
202
+ self.use_mla = use_mla
203
+
204
+ super().__init__(
205
+ pad_token_id=pad_token_id,
206
+ bos_token_id=bos_token_id,
207
+ eos_token_id=eos_token_id,
208
+ tie_word_embeddings=tie_word_embeddings,
209
+ **kwargs,
210
+ )
deepseek_vl2/models/conversation.py ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ From https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
3
+ """
4
+
5
+ import dataclasses
6
+ from enum import IntEnum, auto
7
+ from typing import Any, Dict, List
8
+
9
+
10
+ class SeparatorStyle(IntEnum):
11
+ """Separator styles."""
12
+
13
+ DeepSeek = auto()
14
+ DeepSeekV2 = auto()
15
+ PLAIN = auto()
16
+ ALIGNMENT = auto()
17
+
18
+
19
+ @dataclasses.dataclass
20
+ class Conversation:
21
+ """A class that manages prompt templates and keeps all conversation history."""
22
+
23
+ # The name of this template
24
+ name: str
25
+ # The template of the system prompt
26
+ system_template: str = "{system_message}"
27
+ # The system message
28
+ system_message: str = ""
29
+ # The names of two roles
30
+ roles: List[str] = (("USER", "ASSISTANT"),)
31
+ # All messages. Each item is (role, message).
32
+ messages: List[List[str]] = ()
33
+ # The number of few shot examples
34
+ offset: int = 0
35
+ # The separator style and configurations
36
+ sep_style: SeparatorStyle = SeparatorStyle.DeepSeek
37
+ sep: str = "\n"
38
+ sep2: str = None
39
+ # Stop criteria (the default one is EOS token)
40
+ stop_str: str = None
41
+ # Stops generation if meeting any token in this list
42
+ stop_token_ids: List[int] = None
43
+
44
+ def get_prompt(self) -> str:
45
+ """Get the prompt for generation."""
46
+ system_prompt = self.system_template.format(system_message=self.system_message)
47
+ if self.sep_style == SeparatorStyle.DeepSeek:
48
+ seps = [self.sep, self.sep2]
49
+ if system_prompt == "" or system_prompt is None:
50
+ ret = ""
51
+ else:
52
+ ret = system_prompt + seps[0]
53
+ for i, (role, message) in enumerate(self.messages):
54
+ if message:
55
+ ret += role + ": " + message + seps[i % 2]
56
+ else:
57
+ ret += role + ":"
58
+ return ret
59
+ elif self.sep_style == SeparatorStyle.DeepSeekV2:
60
+ seps = [self.sep, self.sep2]
61
+ if system_prompt == "" or system_prompt is None:
62
+ ret = ""
63
+ else:
64
+ ret = system_prompt + seps[0]
65
+ for i, (role, message) in enumerate(self.messages):
66
+ if message:
67
+ if role == "User":
68
+ ret += "<|sft▁begin|>\n" + message + self.sep #<|sft▁begin|>User Input<|sft▁end|>\nResponse<|end▁of▁sentence|>
69
+ else:
70
+ ret += message + self.sep2
71
+ else:
72
+ ret = ret
73
+ return ret
74
+
75
+ elif self.sep_style == SeparatorStyle.PLAIN:
76
+ seps = [self.sep, self.sep2]
77
+ ret = ""
78
+ for i, (role, message) in enumerate(self.messages):
79
+ if message:
80
+ if type(message) is tuple:
81
+ message, _, _ = message
82
+ if i % 2 == 0:
83
+ ret += message + seps[i % 2]
84
+ else:
85
+ ret += message + seps[i % 2]
86
+ else:
87
+ ret += ""
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ALIGNMENT:
90
+ seps = [self.sep, self.sep2]
91
+ ret = ""
92
+ for i, (role, message) in enumerate(self.messages):
93
+ if message:
94
+ if type(message) is tuple:
95
+ message, _, _ = message
96
+ if i % 2 == 0:
97
+ ret += '<image>\n' + seps[i % 2]
98
+ else:
99
+ ret += message + seps[i % 2]
100
+ else:
101
+ ret += ""
102
+ return ret
103
+ else:
104
+ raise ValueError(f"Invalid style: {self.sep_style}")
105
+
106
+ def set_system_message(self, system_message: str):
107
+ """Set the system message."""
108
+ self.system_message = system_message
109
+
110
+ def append_message(self, role: str, message: str):
111
+ """Append a new message."""
112
+ self.messages.append([role, message])
113
+
114
+ def update_last_message(self, message: str):
115
+ """Update the last output.
116
+
117
+ The last message is typically set to be None when constructing the prompt,
118
+ so we need to update it in-place after getting the response from a model.
119
+ """
120
+ self.messages[-1][1] = message
121
+
122
+ def reset_message(self):
123
+ """Reset a new message."""
124
+ self.messages = []
125
+
126
+ def to_gradio_chatbot(self):
127
+ """Convert the conversation to gradio chatbot format."""
128
+ ret = []
129
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
130
+ if i % 2 == 0:
131
+ ret.append([msg, None])
132
+ else:
133
+ ret[-1][-1] = msg
134
+ return ret
135
+
136
+ def to_openai_api_messages(self):
137
+ """Convert the conversation to OpenAI chat completion format."""
138
+ system_prompt = self.system_template.format(system_message=self.system_message)
139
+ ret = [{"role": "system", "content": system_prompt}]
140
+
141
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
142
+ if i % 2 == 0:
143
+ ret.append({"role": "user", "content": msg})
144
+ else:
145
+ if msg is not None:
146
+ ret.append({"role": "assistant", "content": msg})
147
+ return ret
148
+
149
+ def copy(self):
150
+ return Conversation(
151
+ name=self.name,
152
+ system_template=self.system_template,
153
+ system_message=self.system_message,
154
+ roles=self.roles,
155
+ messages=[[x, y] for x, y in self.messages],
156
+ offset=self.offset,
157
+ sep_style=self.sep_style,
158
+ sep=self.sep,
159
+ sep2=self.sep2,
160
+ stop_str=self.stop_str,
161
+ stop_token_ids=self.stop_token_ids,
162
+ )
163
+
164
+ def dict(self):
165
+ return {
166
+ "template_name": self.name,
167
+ "system_message": self.system_message,
168
+ "roles": self.roles,
169
+ "messages": self.messages,
170
+ "offset": self.offset,
171
+ }
172
+
173
+
174
+ # A global registry for all conversation templates
175
+ conv_templates: Dict[str, Conversation] = {}
176
+
177
+
178
+ def register_conv_template(template: Conversation, override: bool = False):
179
+ """Register a new conversation template."""
180
+ if not override:
181
+ assert template.name not in conv_templates, f"{template.name} has been registered."
182
+
183
+ conv_templates[template.name] = template
184
+
185
+
186
+ def get_conv_template(name: str) -> Conversation:
187
+ """Get a conversation template."""
188
+ return conv_templates[name].copy()
189
+
190
+
191
+ # register_conv_template(
192
+ # Conversation(
193
+ # name="deepseek",
194
+ # system_template="{system_message}",
195
+ # # system_message="You are a helpful assistant. Please answer truthfully and write out your "
196
+ # # "thinking step by step to be sure you get the right answer.",
197
+ # system_message="",
198
+ # roles=("User", "Assistant"),
199
+ # messages=(),
200
+ # offset=0,
201
+ # sep_style=SeparatorStyle.DeepSeek,
202
+ # sep="\n\n",
203
+ # sep2="<|end▁of▁sentence|>",
204
+ # stop_token_ids=[100001],
205
+ # stop_str=["User:", "<|end▁of▁sentence|>"]
206
+ # )
207
+ # )
208
+ register_conv_template(
209
+ Conversation(
210
+ name="deepseek",
211
+ system_template="{system_message}",
212
+ # system_message="You are a helpful assistant. Please answer truthfully and write out your "
213
+ # "thinking step by step to be sure you get the right answer.",
214
+ system_message="",
215
+ roles=("<|User|>", "<|Assistant|>"),
216
+ messages=(),
217
+ offset=0,
218
+ sep_style=SeparatorStyle.DeepSeek,
219
+ sep="\n\n",
220
+ sep2="<|end▁of▁sentence|>",
221
+ stop_token_ids=[100001],
222
+ stop_str=["User:", "<|end▁of▁sentence|>"]
223
+ )
224
+ )
225
+ # register_conv_template(
226
+ # Conversation(
227
+ # name="deepseekv2",
228
+ # system_template="{system_message}",
229
+ # system_message="",
230
+ # roles=("User", "Assistant"),
231
+ # messages=(),
232
+ # offset=0,
233
+ # sep_style=SeparatorStyle.DeepSeekV2,
234
+ # sep="\n<|sft▁end|>",
235
+ # sep2="<|end▁of▁sentence|>",
236
+ # stop_token_ids=[100001],
237
+ # stop_str=["User:", "<|end▁of▁sentence|>"]
238
+ # )
239
+ # )
240
+ register_conv_template(
241
+ Conversation(
242
+ name="deepseekv2",
243
+ system_template="{system_message}",
244
+ system_message="",
245
+ roles=("|<User>|", "|<Assistant>|"),
246
+ messages=(),
247
+ offset=0,
248
+ sep_style=SeparatorStyle.DeepSeekV2,
249
+ sep="\n<|sft▁end|>",
250
+ sep2="<|end▁of▁sentence|>",
251
+ stop_token_ids=[100001],
252
+ stop_str=["User:", "<|end▁of▁sentence|>"]
253
+ )
254
+ )
255
+
256
+
257
+ register_conv_template(
258
+ Conversation(
259
+ name="plain",
260
+ system_template="",
261
+ system_message="",
262
+ roles=("", ""),
263
+ messages=(),
264
+ offset=0,
265
+ sep_style=SeparatorStyle.PLAIN,
266
+ sep="",
267
+ sep2="",
268
+ stop_token_ids=[100001],
269
+ stop_str=['</s>'],
270
+ )
271
+ )
272
+
273
+
274
+ register_conv_template(
275
+ Conversation(
276
+ name="alignment",
277
+ system_template="",
278
+ system_message="",
279
+ roles=("", ""),
280
+ messages=(),
281
+ offset=0,
282
+ sep_style=SeparatorStyle.ALIGNMENT,
283
+ sep="",
284
+ sep2="",
285
+ stop_token_ids=[100001],
286
+ stop_str=['</s>'],
287
+ )
288
+ )
289
+
290
+
291
+ if __name__ == "__main__":
292
+ print("deepseek template:")
293
+ conv = get_conv_template("deepseek")
294
+ conv.append_message(conv.roles[0], "Hello!")
295
+ conv.append_message(conv.roles[1], "Hi! This is Tony.")
296
+ conv.append_message(conv.roles[0], "Who are you?")
297
+ conv.append_message(conv.roles[1], "I am a helpful assistant.")
298
+ conv.append_message(conv.roles[0], "How are you?")
299
+ conv.append_message(conv.roles[1], None)
300
+ print(conv.get_prompt())
301
+
302
+ print("deepseekv2 template:")
303
+ conv = get_conv_template("deepseekv2")
304
+ conv.append_message(conv.roles[0], "Hello!")
305
+ conv.append_message(conv.roles[1], "Hi! This is Tony.")
306
+ conv.append_message(conv.roles[0], "Who are you?")
307
+ conv.append_message(conv.roles[1], "I am a helpful assistant.")
308
+ conv.append_message(conv.roles[0], "How are you?")
309
+ conv.append_message(conv.roles[1], None)
310
+ print(conv.get_prompt())
deepseek_vl2/models/modeling_deepseek.py ADDED
@@ -0,0 +1,1975 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch DeepSeek model and compatible with both DeepSeekV2 and DeepSeekV3"""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+ import numpy as np
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ import torch.distributed as dist
30
+ from einops import repeat
31
+ from torch import nn
32
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
33
+
34
+ from transformers.activations import ACT2FN
35
+ from transformers.cache_utils import Cache, DynamicCache
36
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
37
+ from transformers.models.llama.modeling_llama import (
38
+ LlamaAttention,
39
+ LlamaFlashAttention2
40
+ )
41
+ from transformers.modeling_outputs import (
42
+ BaseModelOutputWithPast,
43
+ CausalLMOutputWithPast,
44
+ SequenceClassifierOutputWithPast,
45
+ )
46
+ from transformers.modeling_utils import PreTrainedModel
47
+ from transformers.pytorch_utils import (
48
+ ALL_LAYERNORM_LAYERS,
49
+ is_torch_greater_or_equal_than_1_13,
50
+ )
51
+ from transformers.utils import (
52
+ add_start_docstrings,
53
+ add_start_docstrings_to_model_forward,
54
+ is_flash_attn_2_available,
55
+ is_flash_attn_greater_or_equal_2_10,
56
+ logging,
57
+ replace_return_docstrings,
58
+ )
59
+ from transformers.utils.import_utils import is_torch_fx_available
60
+
61
+ from .configuration_deepseek import DeepseekV2Config
62
+
63
+ if is_flash_attn_2_available():
64
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
65
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
66
+
67
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
68
+ # It means that the function will not be traced through and simply appear as a node in the graph.
69
+ if is_torch_fx_available():
70
+ if not is_torch_greater_or_equal_than_1_13:
71
+ import torch.fx
72
+
73
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
74
+
75
+ logger = logging.get_logger(__name__)
76
+
77
+ _CONFIG_FOR_DOC = "DeepseekV2Config"
78
+
79
+
80
+ def _get_unpad_data(attention_mask):
81
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
84
+ cu_seqlens = F.pad(
85
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
86
+ )
87
+ return (
88
+ indices,
89
+ cu_seqlens,
90
+ max_seqlen_in_batch,
91
+ )
92
+
93
+
94
+ class DeepseekV2RMSNorm(nn.Module):
95
+ def __init__(self, hidden_size, eps=1e-6):
96
+ """
97
+ DeepseekV2RMSNorm is equivalent to T5LayerNorm
98
+ """
99
+ super().__init__()
100
+ self.weight = nn.Parameter(torch.ones(hidden_size))
101
+ self.variance_epsilon = eps
102
+
103
+ def forward(self, hidden_states):
104
+ input_dtype = hidden_states.dtype
105
+ hidden_states = hidden_states.to(torch.float32)
106
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
+ return self.weight * hidden_states.to(input_dtype)
109
+
110
+
111
+ ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
112
+
113
+
114
+ class DeepseekV2RotaryEmbedding(nn.Module):
115
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
116
+ super().__init__()
117
+
118
+ self.dim = dim
119
+ self.max_position_embeddings = max_position_embeddings
120
+ self.base = base
121
+ inv_freq = 1.0 / (
122
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
123
+ )
124
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
125
+
126
+ # Build here to make `torch.jit.trace` work.
127
+ self._set_cos_sin_cache(
128
+ seq_len=max_position_embeddings,
129
+ device=self.inv_freq.device,
130
+ dtype=torch.get_default_dtype(),
131
+ )
132
+ self.max_seq_len_cached = None
133
+
134
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
135
+ self.max_seq_len_cached = seq_len
136
+ t = torch.arange(
137
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
138
+ )
139
+
140
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
141
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
142
+ emb = torch.cat((freqs, freqs), dim=-1)
143
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
144
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
145
+
146
+ def forward(self, x, seq_len=None):
147
+ # x: [bs, num_attention_heads, seq_len, head_size]
148
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
149
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
150
+
151
+ return (
152
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
153
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
154
+ )
155
+
156
+
157
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
158
+ class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
159
+ """DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
160
+
161
+ def __init__(
162
+ self,
163
+ dim,
164
+ max_position_embeddings=2048,
165
+ base=10000,
166
+ device=None,
167
+ scaling_factor=1.0,
168
+ ):
169
+ self.scaling_factor = scaling_factor
170
+ super().__init__(dim, max_position_embeddings, base, device)
171
+
172
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
173
+ self.max_seq_len_cached = seq_len
174
+ t = torch.arange(
175
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
176
+ )
177
+ t = t / self.scaling_factor
178
+
179
+ freqs = torch.outer(t, self.inv_freq)
180
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
181
+ emb = torch.cat((freqs, freqs), dim=-1)
182
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
183
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
184
+
185
+
186
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
187
+ class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
188
+ """DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
189
+
190
+ def __init__(
191
+ self,
192
+ dim,
193
+ max_position_embeddings=2048,
194
+ base=10000,
195
+ device=None,
196
+ scaling_factor=1.0,
197
+ ):
198
+ self.scaling_factor = scaling_factor
199
+ super().__init__(dim, max_position_embeddings, base, device)
200
+
201
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
202
+ self.max_seq_len_cached = seq_len
203
+
204
+ if seq_len > self.max_position_embeddings:
205
+ base = self.base * (
206
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
207
+ - (self.scaling_factor - 1)
208
+ ) ** (self.dim / (self.dim - 2))
209
+ inv_freq = 1.0 / (
210
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
211
+ )
212
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
213
+
214
+ t = torch.arange(
215
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
216
+ )
217
+
218
+ freqs = torch.outer(t, self.inv_freq)
219
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
220
+ emb = torch.cat((freqs, freqs), dim=-1)
221
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
222
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
223
+
224
+
225
+ # Inverse dim formula to find dim based on number of rotations
226
+ def yarn_find_correction_dim(
227
+ num_rotations, dim, base=10000, max_position_embeddings=2048
228
+ ):
229
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
230
+ 2 * math.log(base)
231
+ )
232
+
233
+
234
+ # Find dim range bounds based on rotations
235
+ def yarn_find_correction_range(
236
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
237
+ ):
238
+ low = math.floor(
239
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
240
+ )
241
+ high = math.ceil(
242
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
243
+ )
244
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
245
+
246
+
247
+ def yarn_get_mscale(scale=1, mscale=1):
248
+ if scale <= 1:
249
+ return 1.0
250
+ return 0.1 * mscale * math.log(scale) + 1.0
251
+
252
+
253
+ def yarn_linear_ramp_mask(min, max, dim):
254
+ if min == max:
255
+ max += 0.001 # Prevent singularity
256
+
257
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
258
+ ramp_func = torch.clamp(linear_func, 0, 1)
259
+ return ramp_func
260
+
261
+
262
+ class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
263
+
264
+ def __init__(
265
+ self,
266
+ dim,
267
+ max_position_embeddings=2048,
268
+ base=10000,
269
+ device=None,
270
+ scaling_factor=1.0,
271
+ original_max_position_embeddings=4096,
272
+ beta_fast=32,
273
+ beta_slow=1,
274
+ mscale=1,
275
+ mscale_all_dim=0,
276
+ ):
277
+ self.scaling_factor = scaling_factor
278
+ self.original_max_position_embeddings = original_max_position_embeddings
279
+ self.beta_fast = beta_fast
280
+ self.beta_slow = beta_slow
281
+ self.mscale = mscale
282
+ self.mscale_all_dim = mscale_all_dim
283
+ super().__init__(dim, max_position_embeddings, base, device)
284
+
285
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
286
+ self.max_seq_len_cached = seq_len
287
+ dim = self.dim
288
+
289
+ freq_extra = 1.0 / (
290
+ self.base
291
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
292
+ )
293
+ freq_inter = 1.0 / (
294
+ self.scaling_factor
295
+ * self.base
296
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
297
+ )
298
+
299
+ low, high = yarn_find_correction_range(
300
+ self.beta_fast,
301
+ self.beta_slow,
302
+ dim,
303
+ self.base,
304
+ self.original_max_position_embeddings,
305
+ )
306
+ inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
307
+ device=device, dtype=torch.float32
308
+ )
309
+ inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
310
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
311
+
312
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
313
+
314
+ freqs = torch.outer(t, inv_freq)
315
+
316
+ _mscale = float(
317
+ yarn_get_mscale(self.scaling_factor, self.mscale)
318
+ / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
319
+ )
320
+
321
+ emb = torch.cat((freqs, freqs), dim=-1)
322
+ self.register_buffer(
323
+ "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
324
+ )
325
+ self.register_buffer(
326
+ "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
327
+ )
328
+
329
+
330
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
331
+ def rotate_half(x):
332
+ """Rotates half the hidden dims of the input."""
333
+ x1 = x[..., : x.shape[-1] // 2]
334
+ x2 = x[..., x.shape[-1] // 2 :]
335
+ return torch.cat((-x2, x1), dim=-1)
336
+
337
+
338
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
339
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
340
+ """Applies Rotary Position Embedding to the query and key tensors.
341
+
342
+ Args:
343
+ q (`torch.Tensor`): The query tensor.
344
+ k (`torch.Tensor`): The key tensor.
345
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
346
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
347
+ position_ids (`torch.Tensor`):
348
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
349
+ used to pass offsetted position ids when working with a KV-cache.
350
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
351
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
352
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
353
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
354
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
355
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
356
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
357
+ Returns:
358
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
359
+ """
360
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
361
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
362
+
363
+ b, h, s, d = q.shape
364
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
365
+
366
+ b, h, s, d = k.shape
367
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
368
+
369
+ q_embed = (q * cos) + (rotate_half(q) * sin)
370
+ k_embed = (k * cos) + (rotate_half(k) * sin)
371
+ return q_embed, k_embed
372
+
373
+
374
+ class DeepseekV2MLP(nn.Module):
375
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
376
+ super().__init__()
377
+ self.config = config
378
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
379
+ self.intermediate_size = (
380
+ config.intermediate_size if intermediate_size is None else intermediate_size
381
+ )
382
+
383
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
384
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
385
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
386
+ self.act_fn = ACT2FN[config.hidden_act]
387
+
388
+ def forward(self, x):
389
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
390
+ return down_proj
391
+
392
+
393
+ class MoEGate(nn.Module):
394
+ def __init__(self, config):
395
+ super().__init__()
396
+ self.config = config
397
+ self.top_k = config.num_experts_per_tok
398
+ self.n_routed_experts = config.n_routed_experts
399
+ self.routed_scaling_factor = config.routed_scaling_factor
400
+ self.scoring_func = config.scoring_func
401
+ self.alpha = config.aux_loss_alpha
402
+ self.seq_aux = config.seq_aux
403
+ self.topk_method = config.topk_method
404
+ self.n_group = config.n_group
405
+ self.topk_group = config.topk_group
406
+
407
+ # topk selection algorithm
408
+ self.norm_topk_prob = config.norm_topk_prob
409
+ self.gating_dim = config.hidden_size
410
+ self.weight = nn.Parameter(
411
+ torch.empty((self.n_routed_experts, self.gating_dim))
412
+ )
413
+ if self.topk_method == "noaux_tc":
414
+ self.e_score_correction_bias = nn.Parameter(
415
+ torch.empty((self.n_routed_experts))
416
+ )
417
+ self.reset_parameters()
418
+
419
+ def reset_parameters(self) -> None:
420
+ import torch.nn.init as init
421
+
422
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
423
+
424
+ def forward(self, hidden_states):
425
+ bsz, seq_len, h = hidden_states.shape
426
+ ### compute gating score
427
+ hidden_states = hidden_states.view(-1, h)
428
+ logits = F.linear(
429
+ hidden_states.type(torch.float32), self.weight.type(torch.float32), None
430
+ )
431
+ if self.scoring_func == "softmax":
432
+ scores = logits.softmax(dim=-1, dtype=torch.float32)
433
+ elif self.scoring_func == "sigmoid":
434
+ scores = logits.sigmoid()
435
+ else:
436
+ raise NotImplementedError(
437
+ f"insupportable scoring function for MoE gating: {self.scoring_func}"
438
+ )
439
+
440
+ ### select top-k experts
441
+ if self.topk_method == "greedy":
442
+ topk_weight, topk_idx = torch.topk(
443
+ scores, k=self.top_k, dim=-1, sorted=False
444
+ )
445
+ elif self.topk_method == "group_limited_greedy":
446
+ group_scores = (
447
+ scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
448
+ ) # [n, n_group]
449
+ group_idx = torch.topk(
450
+ group_scores, k=self.topk_group, dim=-1, sorted=False
451
+ )[
452
+ 1
453
+ ] # [n, top_k_group]
454
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
455
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
456
+ score_mask = (
457
+ group_mask.unsqueeze(-1)
458
+ .expand(
459
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
460
+ )
461
+ .reshape(bsz * seq_len, -1)
462
+ ) # [n, e]
463
+ tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
464
+ topk_weight, topk_idx = torch.topk(
465
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
466
+ )
467
+ elif self.topk_method == "noaux_tc":
468
+ assert not self.training
469
+ scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
470
+ group_scores = (
471
+ scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
472
+ ) # [n, n_group]
473
+ group_idx = torch.topk(
474
+ group_scores, k=self.topk_group, dim=-1, sorted=False
475
+ )[
476
+ 1
477
+ ] # [n, top_k_group]
478
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
479
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
480
+ score_mask = (
481
+ group_mask.unsqueeze(-1)
482
+ .expand(
483
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
484
+ )
485
+ .reshape(bsz * seq_len, -1)
486
+ ) # [n, e]
487
+ tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
488
+ _, topk_idx = torch.topk(
489
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
490
+ )
491
+ topk_weight = scores.gather(1, topk_idx)
492
+
493
+ ### norm gate to sum 1
494
+ if self.top_k > 1 and self.norm_topk_prob:
495
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
496
+ topk_weight = topk_weight / denominator * self.routed_scaling_factor
497
+ else:
498
+ topk_weight = topk_weight * self.routed_scaling_factor
499
+ ### expert-level computation auxiliary loss
500
+ if self.training and self.alpha > 0.0:
501
+ scores_for_aux = scores
502
+ aux_topk = self.top_k
503
+ # always compute aux loss based on the naive greedy topk method
504
+ topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
505
+ if self.seq_aux:
506
+ scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
507
+ ce = torch.zeros(
508
+ bsz, self.n_routed_experts, device=hidden_states.device
509
+ )
510
+ ce.scatter_add_(
511
+ 1,
512
+ topk_idx_for_aux_loss,
513
+ torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
514
+ ).div_(seq_len * aux_topk / self.n_routed_experts)
515
+ aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
516
+ dim=1
517
+ ).mean() * self.alpha
518
+ else:
519
+ mask_ce = F.one_hot(
520
+ topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
521
+ )
522
+ ce = mask_ce.float().mean(0)
523
+ Pi = scores_for_aux.mean(0)
524
+ fi = ce * self.n_routed_experts
525
+ aux_loss = (Pi * fi).sum() * self.alpha
526
+ else:
527
+ aux_loss = None
528
+ return topk_idx, topk_weight, aux_loss
529
+
530
+
531
+ class AddAuxiliaryLoss(torch.autograd.Function):
532
+ """
533
+ The trick function of adding auxiliary (aux) loss,
534
+ which includes the gradient of the aux loss during backpropagation.
535
+ """
536
+
537
+ @staticmethod
538
+ def forward(ctx, x, loss):
539
+ assert loss.numel() == 1
540
+ ctx.dtype = loss.dtype
541
+ ctx.required_aux_loss = loss.requires_grad
542
+ return x
543
+
544
+ @staticmethod
545
+ def backward(ctx, grad_output):
546
+ grad_loss = None
547
+ if ctx.required_aux_loss:
548
+ grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
549
+ return grad_output, grad_loss
550
+
551
+
552
+ class DeepseekV2MoE(nn.Module):
553
+ """
554
+ A mixed expert module containing shared experts.
555
+ """
556
+
557
+ def __init__(self, config):
558
+ super().__init__()
559
+ self.config = config
560
+ self.num_experts_per_tok = config.num_experts_per_tok
561
+
562
+ if hasattr(config, "ep_size") and config.ep_size > 1:
563
+ assert config.ep_size == dist.get_world_size()
564
+ self.ep_size = config.ep_size
565
+ self.experts_per_rank = config.n_routed_experts // config.ep_size
566
+ self.ep_rank = dist.get_rank()
567
+ self.experts = nn.ModuleList(
568
+ [
569
+ (
570
+ DeepseekV2MLP(
571
+ config, intermediate_size=config.moe_intermediate_size
572
+ )
573
+ if i >= self.ep_rank * self.experts_per_rank
574
+ and i < (self.ep_rank + 1) * self.experts_per_rank
575
+ else None
576
+ )
577
+ for i in range(config.n_routed_experts)
578
+ ]
579
+ )
580
+ else:
581
+ self.ep_size = 1
582
+ self.experts_per_rank = config.n_routed_experts
583
+ self.ep_rank = 0
584
+ self.experts = nn.ModuleList(
585
+ [
586
+ DeepseekV2MLP(
587
+ config, intermediate_size=config.moe_intermediate_size
588
+ )
589
+ for i in range(config.n_routed_experts)
590
+ ]
591
+ )
592
+ self.gate = MoEGate(config)
593
+ if config.n_shared_experts is not None:
594
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
595
+ self.shared_experts = DeepseekV2MLP(
596
+ config=config, intermediate_size=intermediate_size
597
+ )
598
+
599
+ def forward(self, hidden_states):
600
+ identity = hidden_states
601
+ orig_shape = hidden_states.shape
602
+ topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
603
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
604
+ flat_topk_idx = topk_idx.view(-1)
605
+ if self.training:
606
+ hidden_states = hidden_states.repeat_interleave(
607
+ self.num_experts_per_tok, dim=0
608
+ )
609
+ y = torch.empty_like(hidden_states)
610
+ for i, expert in enumerate(self.experts):
611
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
612
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
613
+ y = y.to(hidden_states.dtype).view(*orig_shape)
614
+ y = AddAuxiliaryLoss.apply(y, aux_loss)
615
+ else:
616
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
617
+ if self.config.n_shared_experts is not None:
618
+ y = y + self.shared_experts(identity)
619
+ return y
620
+
621
+ @torch.no_grad()
622
+ def moe_infer(self, x, topk_ids, topk_weight):
623
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
624
+ cnts.scatter_(1, topk_ids, 1)
625
+ tokens_per_expert = cnts.sum(dim=0)
626
+ idxs = topk_ids.view(-1).argsort()
627
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
628
+ sorted_tokens_shape = sorted_tokens.shape
629
+ if self.ep_size > 1:
630
+ tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
631
+ tokens_per_expert_group = tokens_per_expert.new_empty(
632
+ tokens_per_expert.shape[0]
633
+ )
634
+ dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
635
+ output_splits = (
636
+ tokens_per_expert_group.view(self.ep_size, -1)
637
+ .sum(1)
638
+ .cpu()
639
+ .numpy()
640
+ .tolist()
641
+ )
642
+ gathered_tokens = sorted_tokens.new_empty(
643
+ tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
644
+ )
645
+ input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
646
+ dist.all_to_all(
647
+ list(gathered_tokens.split(output_splits)),
648
+ list(sorted_tokens.split(input_split_sizes)),
649
+ )
650
+ tokens_per_expert_post_gather = tokens_per_expert_group.view(
651
+ self.ep_size, self.experts_per_rank
652
+ ).sum(dim=0)
653
+ gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
654
+ s = 0
655
+ for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
656
+ gatherd_idxs[s : s + k] = i % self.experts_per_rank
657
+ s += k
658
+ gatherd_idxs = gatherd_idxs.argsort()
659
+ sorted_tokens = gathered_tokens[gatherd_idxs]
660
+ tokens_per_expert = tokens_per_expert_post_gather
661
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
662
+
663
+ outputs = []
664
+ start_idx = 0
665
+ for i, num_tokens in enumerate(tokens_per_expert):
666
+ end_idx = start_idx + num_tokens
667
+ if num_tokens == 0:
668
+ continue
669
+ expert = self.experts[i + self.ep_rank * self.experts_per_rank]
670
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
671
+ expert_out = expert(tokens_for_this_expert)
672
+ outputs.append(expert_out)
673
+ start_idx = end_idx
674
+
675
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
676
+ if self.ep_size > 1:
677
+ new_x = torch.empty_like(outs)
678
+ new_x[gatherd_idxs] = outs
679
+ gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
680
+ dist.all_to_all(
681
+ list(gathered_tokens.split(input_split_sizes)),
682
+ list(new_x.split(output_splits)),
683
+ )
684
+ outs = gathered_tokens
685
+
686
+ new_x = torch.empty_like(outs)
687
+ new_x[idxs] = outs
688
+ final_out = (
689
+ new_x.view(*topk_ids.shape, -1)
690
+ .type(topk_weight.dtype)
691
+ .mul_(topk_weight.unsqueeze(dim=-1))
692
+ .sum(dim=1)
693
+ .type(new_x.dtype)
694
+ )
695
+ return final_out
696
+
697
+
698
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
699
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
700
+ """
701
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
702
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
703
+ """
704
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
705
+ if n_rep == 1:
706
+ return hidden_states
707
+ hidden_states = hidden_states[:, :, None, :, :].expand(
708
+ batch, num_key_value_heads, n_rep, slen, head_dim
709
+ )
710
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
711
+
712
+
713
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
714
+ class DeepseekV2Attention(nn.Module):
715
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
716
+
717
+ def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
718
+ super().__init__()
719
+ self.config = config
720
+ self.layer_idx = layer_idx
721
+ if layer_idx is None:
722
+ logger.warning_once(
723
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
724
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
725
+ "when creating this class."
726
+ )
727
+
728
+ self.attention_dropout = config.attention_dropout
729
+ self.hidden_size = config.hidden_size
730
+ self.num_heads = config.num_attention_heads
731
+
732
+ self.max_position_embeddings = config.max_position_embeddings
733
+ self.rope_theta = config.rope_theta
734
+ self.q_lora_rank = config.q_lora_rank
735
+ self.qk_rope_head_dim = config.qk_rope_head_dim
736
+ self.kv_lora_rank = config.kv_lora_rank
737
+ self.v_head_dim = config.v_head_dim
738
+ self.qk_nope_head_dim = config.qk_nope_head_dim
739
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
740
+
741
+ self.is_causal = True
742
+
743
+ if self.q_lora_rank is None:
744
+ self.q_proj = nn.Linear(
745
+ self.hidden_size, self.num_heads * self.q_head_dim, bias=False
746
+ )
747
+ else:
748
+ self.q_a_proj = nn.Linear(
749
+ self.hidden_size, config.q_lora_rank, bias=config.attention_bias
750
+ )
751
+ self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
752
+ self.q_b_proj = nn.Linear(
753
+ config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
754
+ )
755
+
756
+ self.kv_a_proj_with_mqa = nn.Linear(
757
+ self.hidden_size,
758
+ config.kv_lora_rank + config.qk_rope_head_dim,
759
+ bias=config.attention_bias,
760
+ )
761
+ self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
762
+ self.kv_b_proj = nn.Linear(
763
+ config.kv_lora_rank,
764
+ self.num_heads
765
+ * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
766
+ bias=False,
767
+ )
768
+
769
+ self.o_proj = nn.Linear(
770
+ self.num_heads * self.v_head_dim,
771
+ self.hidden_size,
772
+ bias=config.attention_bias,
773
+ )
774
+ self._init_rope()
775
+
776
+ self.softmax_scale = self.q_head_dim ** (-0.5)
777
+ if self.config.rope_scaling is not None:
778
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
779
+ scaling_factor = self.config.rope_scaling["factor"]
780
+ if mscale_all_dim:
781
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
782
+ self.softmax_scale = self.softmax_scale * mscale * mscale
783
+
784
+ def _init_rope(self):
785
+ if self.config.rope_scaling is None:
786
+ self.rotary_emb = DeepseekV2RotaryEmbedding(
787
+ self.qk_rope_head_dim,
788
+ max_position_embeddings=self.max_position_embeddings,
789
+ base=self.rope_theta,
790
+ )
791
+ else:
792
+ scaling_type = self.config.rope_scaling["type"]
793
+ scaling_factor = self.config.rope_scaling["factor"]
794
+ if scaling_type == "linear":
795
+ self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
796
+ self.qk_rope_head_dim,
797
+ max_position_embeddings=self.max_position_embeddings,
798
+ scaling_factor=scaling_factor,
799
+ base=self.rope_theta,
800
+ )
801
+ elif scaling_type == "dynamic":
802
+ self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
803
+ self.qk_rope_head_dim,
804
+ max_position_embeddings=self.max_position_embeddings,
805
+ scaling_factor=scaling_factor,
806
+ base=self.rope_theta,
807
+ )
808
+ elif scaling_type == "yarn":
809
+ kwargs = {
810
+ key: self.config.rope_scaling[key]
811
+ for key in [
812
+ "original_max_position_embeddings",
813
+ "beta_fast",
814
+ "beta_slow",
815
+ "mscale",
816
+ "mscale_all_dim",
817
+ ]
818
+ if key in self.config.rope_scaling
819
+ }
820
+ self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
821
+ self.qk_rope_head_dim,
822
+ max_position_embeddings=self.max_position_embeddings,
823
+ scaling_factor=scaling_factor,
824
+ base=self.rope_theta,
825
+ **kwargs,
826
+ )
827
+ else:
828
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
829
+
830
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
831
+ return (
832
+ tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
833
+ .transpose(1, 2)
834
+ .contiguous()
835
+ )
836
+
837
+ def forward(
838
+ self,
839
+ hidden_states: torch.Tensor,
840
+ attention_mask: Optional[torch.Tensor] = None,
841
+ position_ids: Optional[torch.LongTensor] = None,
842
+ past_key_value: Optional[Cache] = None,
843
+ output_attentions: bool = False,
844
+ use_cache: bool = False,
845
+ **kwargs,
846
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
847
+ if "padding_mask" in kwargs:
848
+ warnings.warn(
849
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
850
+ )
851
+ bsz, q_len, _ = hidden_states.size()
852
+
853
+ if self.q_lora_rank is None:
854
+ q = self.q_proj(hidden_states)
855
+ else:
856
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
857
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
858
+ q_nope, q_pe = torch.split(
859
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
860
+ )
861
+
862
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
863
+ compressed_kv, k_pe = torch.split(
864
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
865
+ )
866
+ compressed_kv = self.kv_a_layernorm(compressed_kv)
867
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
868
+
869
+ kv_seq_len = k_pe.shape[-2]
870
+ if past_key_value is not None:
871
+ if self.layer_idx is None:
872
+ raise ValueError(
873
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
874
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
875
+ "with a layer index."
876
+ )
877
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
878
+
879
+ cos, sin = self.rotary_emb(q_pe, seq_len=kv_seq_len)
880
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
881
+
882
+ if past_key_value is not None:
883
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
884
+ compressed_kv = compressed_kv.unsqueeze(1)
885
+ k_pe, compressed_kv = past_key_value.update(k_pe, compressed_kv, self.layer_idx, cache_kwargs)
886
+ compressed_kv = compressed_kv.squeeze(1)
887
+
888
+ kv_b_proj = self.kv_b_proj.weight.view(self.num_heads, -1, self.kv_lora_rank)
889
+ q_absorb = kv_b_proj[:, :self.qk_nope_head_dim, :]
890
+ out_absorb = kv_b_proj[:, self.qk_nope_head_dim:, :]
891
+
892
+ q_nope = torch.matmul(q_nope, q_absorb)
893
+ attn_weights = (torch.matmul(q_pe, k_pe.mT) +
894
+ torch.matmul(q_nope, compressed_kv.unsqueeze(-3).mT)) * self.softmax_scale
895
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
896
+ raise ValueError(
897
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
898
+ f" {attn_weights.size()}"
899
+ )
900
+ assert attention_mask is not None
901
+ if attention_mask is not None:
902
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
903
+ raise ValueError(
904
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
905
+ )
906
+ attn_weights = attn_weights + attention_mask
907
+
908
+ # upcast attention to fp32
909
+ attn_weights = nn.functional.softmax(
910
+ attn_weights, dim=-1, dtype=torch.float32
911
+ ).to(q_pe.dtype)
912
+ attn_weights = nn.functional.dropout(
913
+ attn_weights, p=self.attention_dropout, training=self.training
914
+ )
915
+ attn_output = torch.einsum('bhql,blc->bhqc', attn_weights, compressed_kv)
916
+
917
+ attn_output = torch.matmul(attn_output, out_absorb.mT)
918
+
919
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
920
+ raise ValueError(
921
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
922
+ f" {attn_output.size()}"
923
+ )
924
+
925
+ attn_output = attn_output.transpose(1, 2).contiguous()
926
+
927
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
928
+
929
+ attn_output = self.o_proj(attn_output)
930
+
931
+ if not output_attentions:
932
+ attn_weights = None
933
+
934
+ return attn_output, attn_weights, past_key_value
935
+
936
+
937
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
938
+ class DeepseekV2FlashAttention2(DeepseekV2Attention):
939
+ """
940
+ DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
941
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
942
+ flash attention and deal with padding tokens in case the input contains any of them.
943
+ """
944
+
945
+ def __init__(self, *args, **kwargs):
946
+ super().__init__(*args, **kwargs)
947
+
948
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
949
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
950
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
951
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
952
+
953
+ def forward(
954
+ self,
955
+ hidden_states: torch.Tensor,
956
+ attention_mask: Optional[torch.LongTensor] = None,
957
+ position_ids: Optional[torch.LongTensor] = None,
958
+ past_key_value: Optional[Cache] = None,
959
+ output_attentions: bool = False,
960
+ use_cache: bool = False,
961
+ **kwargs,
962
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
963
+ # DeepseekV2FlashAttention2 attention does not support output_attentions
964
+ if "padding_mask" in kwargs:
965
+ warnings.warn(
966
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
967
+ )
968
+
969
+ # overwrite attention_mask with padding_mask
970
+ attention_mask = kwargs.pop("padding_mask")
971
+
972
+ output_attentions = False
973
+
974
+ bsz, q_len, _ = hidden_states.size()
975
+
976
+ if self.q_lora_rank is None:
977
+ q = self.q_proj(hidden_states)
978
+ else:
979
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
980
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
981
+ q_nope, q_pe = torch.split(
982
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
983
+ )
984
+
985
+ # Flash attention requires the input to have the shape
986
+ # batch_size x seq_length x head_dim x hidden_dim
987
+ # therefore we just need to keep the original shape
988
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
989
+ compressed_kv, k_pe = torch.split(
990
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
991
+ )
992
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
993
+ kv = (
994
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
995
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
996
+ .transpose(1, 2)
997
+ )
998
+
999
+ k_nope, value_states = torch.split(
1000
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
1001
+ )
1002
+ kv_seq_len = value_states.shape[-2]
1003
+
1004
+ kv_seq_len = value_states.shape[-2]
1005
+ if past_key_value is not None:
1006
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
1007
+
1008
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
1009
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
1010
+
1011
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1012
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
1013
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
1014
+
1015
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
1016
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
1017
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
1018
+
1019
+ if self.q_head_dim != self.v_head_dim:
1020
+ value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
1021
+
1022
+ # TODO: support compressed_kv for kv_cache (instead of key_states, value_states) in flash_attention version
1023
+ if past_key_value is not None:
1024
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1025
+ key_states, value_states = past_key_value.update(
1026
+ key_states, value_states, self.layer_idx, cache_kwargs
1027
+ )
1028
+
1029
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
1030
+ # to be able to avoid many of these transpose/reshape/view.
1031
+ query_states = query_states.transpose(1, 2)
1032
+ key_states = key_states.transpose(1, 2)
1033
+ value_states = value_states.transpose(1, 2)
1034
+
1035
+ dropout_rate = self.attention_dropout if self.training else 0.0
1036
+
1037
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
1038
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
1039
+ # cast them back in the correct dtype just to be sure everything works as expected.
1040
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
1041
+ # in fp32. (DeepseekV2RMSNorm handles it correctly)
1042
+
1043
+ input_dtype = query_states.dtype
1044
+ if input_dtype == torch.float32:
1045
+ # Handle the case where the model is quantized
1046
+ if hasattr(self.config, "_pre_quantization_dtype"):
1047
+ target_dtype = self.config._pre_quantization_dtype
1048
+ elif torch.is_autocast_enabled():
1049
+ target_dtype = torch.get_autocast_gpu_dtype()
1050
+ else:
1051
+ target_dtype = (
1052
+ self.q_proj.weight.dtype
1053
+ if self.q_lora_rank is None
1054
+ else self.q_a_proj.weight.dtype
1055
+ )
1056
+
1057
+ logger.warning_once(
1058
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
1059
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
1060
+ f" {target_dtype}."
1061
+ )
1062
+
1063
+ query_states = query_states.to(target_dtype)
1064
+ key_states = key_states.to(target_dtype)
1065
+ value_states = value_states.to(target_dtype)
1066
+
1067
+ attn_output = self._flash_attention_forward(
1068
+ query_states,
1069
+ key_states,
1070
+ value_states,
1071
+ attention_mask,
1072
+ q_len,
1073
+ dropout=dropout_rate,
1074
+ softmax_scale=self.softmax_scale,
1075
+ )
1076
+ if self.q_head_dim != self.v_head_dim:
1077
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
1078
+
1079
+ attn_output = attn_output.reshape(
1080
+ bsz, q_len, self.num_heads * self.v_head_dim
1081
+ ).contiguous()
1082
+ attn_output = self.o_proj(attn_output)
1083
+
1084
+ if not output_attentions:
1085
+ attn_weights = None
1086
+
1087
+ return attn_output, attn_weights, past_key_value
1088
+
1089
+ def _flash_attention_forward(
1090
+ self,
1091
+ query_states,
1092
+ key_states,
1093
+ value_states,
1094
+ attention_mask,
1095
+ query_length,
1096
+ dropout=0.0,
1097
+ softmax_scale=None,
1098
+ ):
1099
+ """
1100
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1101
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1102
+
1103
+ Args:
1104
+ query_states (`torch.Tensor`):
1105
+ Input query states to be passed to Flash Attention API
1106
+ key_states (`torch.Tensor`):
1107
+ Input key states to be passed to Flash Attention API
1108
+ value_states (`torch.Tensor`):
1109
+ Input value states to be passed to Flash Attention API
1110
+ attention_mask (`torch.Tensor`):
1111
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1112
+ position of padding tokens and 1 for the position of non-padding tokens.
1113
+ dropout (`int`, *optional*):
1114
+ Attention dropout
1115
+ softmax_scale (`float`, *optional*):
1116
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1117
+ """
1118
+ if not self._flash_attn_uses_top_left_mask:
1119
+ causal = self.is_causal
1120
+ else:
1121
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
1122
+ causal = self.is_causal and query_length != 1
1123
+
1124
+ # Contains at least one padding token in the sequence
1125
+ if attention_mask is not None:
1126
+ batch_size = query_states.shape[0]
1127
+ (
1128
+ query_states,
1129
+ key_states,
1130
+ value_states,
1131
+ indices_q,
1132
+ cu_seq_lens,
1133
+ max_seq_lens,
1134
+ ) = self._upad_input(
1135
+ query_states, key_states, value_states, attention_mask, query_length
1136
+ )
1137
+
1138
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1139
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1140
+
1141
+ attn_output_unpad = flash_attn_varlen_func(
1142
+ query_states,
1143
+ key_states,
1144
+ value_states,
1145
+ cu_seqlens_q=cu_seqlens_q,
1146
+ cu_seqlens_k=cu_seqlens_k,
1147
+ max_seqlen_q=max_seqlen_in_batch_q,
1148
+ max_seqlen_k=max_seqlen_in_batch_k,
1149
+ dropout_p=dropout,
1150
+ softmax_scale=softmax_scale,
1151
+ causal=causal,
1152
+ )
1153
+
1154
+ attn_output = pad_input(
1155
+ attn_output_unpad, indices_q, batch_size, query_length
1156
+ )
1157
+ else:
1158
+ attn_output = flash_attn_func(
1159
+ query_states,
1160
+ key_states,
1161
+ value_states,
1162
+ dropout,
1163
+ softmax_scale=softmax_scale,
1164
+ causal=causal,
1165
+ )
1166
+
1167
+ return attn_output
1168
+
1169
+ def _upad_input(
1170
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
1171
+ ):
1172
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1173
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1174
+
1175
+ key_layer = index_first_axis(
1176
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1177
+ indices_k,
1178
+ )
1179
+ value_layer = index_first_axis(
1180
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1181
+ indices_k,
1182
+ )
1183
+ if query_length == kv_seq_len:
1184
+ query_layer = index_first_axis(
1185
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1186
+ indices_k,
1187
+ )
1188
+ cu_seqlens_q = cu_seqlens_k
1189
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1190
+ indices_q = indices_k
1191
+ elif query_length == 1:
1192
+ max_seqlen_in_batch_q = 1
1193
+ cu_seqlens_q = torch.arange(
1194
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1195
+ ) # There is a memcpy here, that is very bad.
1196
+ indices_q = cu_seqlens_q[:-1]
1197
+ query_layer = query_layer.squeeze(1)
1198
+ else:
1199
+ # The -q_len: slice assumes left padding.
1200
+ attention_mask = attention_mask[:, -query_length:]
1201
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1202
+ query_layer, attention_mask
1203
+ )
1204
+
1205
+ return (
1206
+ query_layer,
1207
+ key_layer,
1208
+ value_layer,
1209
+ indices_q,
1210
+ (cu_seqlens_q, cu_seqlens_k),
1211
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1212
+ )
1213
+
1214
+
1215
+ ATTENTION_CLASSES = {
1216
+ "eager": DeepseekV2Attention,
1217
+ "flash_attention_2": DeepseekV2FlashAttention2,
1218
+
1219
+ "mla_eager": DeepseekV2Attention,
1220
+ "mla_flash_attention_2": DeepseekV2FlashAttention2,
1221
+
1222
+ "mha_eager": LlamaAttention,
1223
+ "mha_flash_attention_2": LlamaFlashAttention2
1224
+ }
1225
+
1226
+
1227
+ class DeepseekV2DecoderLayer(nn.Module):
1228
+ def __init__(self, config: DeepseekV2Config, layer_idx: int):
1229
+ super().__init__()
1230
+ self.hidden_size = config.hidden_size
1231
+
1232
+ if config.use_mla:
1233
+ attn_implementation = "mla_" + config._attn_implementation
1234
+ else:
1235
+ attn_implementation = "mha_" + config._attn_implementation
1236
+
1237
+ self.self_attn = ATTENTION_CLASSES[attn_implementation](
1238
+ config=config, layer_idx=layer_idx
1239
+ )
1240
+
1241
+ self.mlp = (
1242
+ DeepseekV2MoE(config)
1243
+ if (
1244
+ config.n_routed_experts is not None
1245
+ and layer_idx >= config.first_k_dense_replace
1246
+ and layer_idx % config.moe_layer_freq == 0
1247
+ )
1248
+ else DeepseekV2MLP(config)
1249
+ )
1250
+ self.input_layernorm = DeepseekV2RMSNorm(
1251
+ config.hidden_size, eps=config.rms_norm_eps
1252
+ )
1253
+ self.post_attention_layernorm = DeepseekV2RMSNorm(
1254
+ config.hidden_size, eps=config.rms_norm_eps
1255
+ )
1256
+
1257
+ def forward(
1258
+ self,
1259
+ hidden_states: torch.Tensor,
1260
+ attention_mask: Optional[torch.Tensor] = None,
1261
+ position_ids: Optional[torch.LongTensor] = None,
1262
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1263
+ output_attentions: Optional[bool] = False,
1264
+ use_cache: Optional[bool] = False,
1265
+ **kwargs,
1266
+ ) -> Tuple[
1267
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1268
+ ]:
1269
+ """
1270
+ Args:
1271
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1272
+ attention_mask (`torch.FloatTensor`, *optional*):
1273
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1274
+ query_sequence_length, key_sequence_length)` if default attention is used.
1275
+ output_attentions (`bool`, *optional*):
1276
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1277
+ returned tensors for more detail.
1278
+ use_cache (`bool`, *optional*):
1279
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1280
+ (see `past_key_values`).
1281
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1282
+ """
1283
+ if "padding_mask" in kwargs:
1284
+ warnings.warn(
1285
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1286
+ )
1287
+ residual = hidden_states
1288
+
1289
+ hidden_states = self.input_layernorm(hidden_states)
1290
+
1291
+ # Self Attention
1292
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1293
+ hidden_states=hidden_states,
1294
+ attention_mask=attention_mask,
1295
+ position_ids=position_ids,
1296
+ past_key_value=past_key_value,
1297
+ output_attentions=output_attentions,
1298
+ use_cache=use_cache,
1299
+ **kwargs,
1300
+ )
1301
+ hidden_states = residual + hidden_states
1302
+
1303
+ # Fully Connected
1304
+ residual = hidden_states
1305
+ hidden_states = self.post_attention_layernorm(hidden_states)
1306
+ hidden_states = self.mlp(hidden_states)
1307
+ hidden_states = residual + hidden_states
1308
+
1309
+ outputs = (hidden_states,)
1310
+
1311
+ if output_attentions:
1312
+ outputs += (self_attn_weights,)
1313
+
1314
+ if use_cache:
1315
+ outputs += (present_key_value,)
1316
+
1317
+ return outputs
1318
+
1319
+
1320
+ DeepseekV2_START_DOCSTRING = r"""
1321
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1322
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1323
+ etc.)
1324
+
1325
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1326
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1327
+ and behavior.
1328
+
1329
+ Parameters:
1330
+ config ([`DeepseekV2Config`]):
1331
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1332
+ load the weights associated with the model, only the configuration. Check out the
1333
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1334
+ """
1335
+
1336
+
1337
+ @add_start_docstrings(
1338
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1339
+ DeepseekV2_START_DOCSTRING,
1340
+ )
1341
+ class DeepseekV2PreTrainedModel(PreTrainedModel):
1342
+ config_class = DeepseekV2Config
1343
+ base_model_prefix = "model"
1344
+ supports_gradient_checkpointing = True
1345
+ _no_split_modules = ["DeepseekV2DecoderLayer"]
1346
+ _skip_keys_device_placement = "past_key_values"
1347
+ _supports_flash_attn_2 = True
1348
+ _supports_cache_class = True
1349
+
1350
+ def _init_weights(self, module):
1351
+ std = self.config.initializer_range
1352
+ if isinstance(module, nn.Linear):
1353
+ module.weight.data.normal_(mean=0.0, std=std)
1354
+ if module.bias is not None:
1355
+ module.bias.data.zero_()
1356
+ elif isinstance(module, nn.Embedding):
1357
+ module.weight.data.normal_(mean=0.0, std=std)
1358
+ if module.padding_idx is not None:
1359
+ module.weight.data[module.padding_idx].zero_()
1360
+
1361
+
1362
+ DeepseekV2_INPUTS_DOCSTRING = r"""
1363
+ Args:
1364
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1365
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1366
+ it.
1367
+
1368
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1369
+ [`PreTrainedTokenizer.__call__`] for details.
1370
+
1371
+ [What are input IDs?](../glossary#input-ids)
1372
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1373
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1374
+
1375
+ - 1 for tokens that are **not masked**,
1376
+ - 0 for tokens that are **masked**.
1377
+
1378
+ [What are attention masks?](../glossary#attention-mask)
1379
+
1380
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1381
+ [`PreTrainedTokenizer.__call__`] for details.
1382
+
1383
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1384
+ `past_key_values`).
1385
+
1386
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1387
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1388
+ information on the default strategy.
1389
+
1390
+ - 1 indicates the head is **not masked**,
1391
+ - 0 indicates the head is **masked**.
1392
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1393
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1394
+ config.n_positions - 1]`.
1395
+
1396
+ [What are position IDs?](../glossary#position-ids)
1397
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1398
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1399
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1400
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1401
+
1402
+ Two formats are allowed:
1403
+ - a [`~cache_utils.Cache`] instance;
1404
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1405
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1406
+ cache format.
1407
+
1408
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1409
+ legacy cache format will be returned.
1410
+
1411
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1412
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1413
+ of shape `(batch_size, sequence_length)`.
1414
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1415
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1416
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1417
+ model's internal embedding lookup matrix.
1418
+ use_cache (`bool`, *optional*):
1419
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1420
+ `past_key_values`).
1421
+ output_attentions (`bool`, *optional*):
1422
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1423
+ tensors for more detail.
1424
+ output_hidden_states (`bool`, *optional*):
1425
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1426
+ more detail.
1427
+ return_dict (`bool`, *optional*):
1428
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1429
+ """
1430
+
1431
+
1432
+ @add_start_docstrings(
1433
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1434
+ DeepseekV2_START_DOCSTRING,
1435
+ )
1436
+ class DeepseekV2Model(DeepseekV2PreTrainedModel):
1437
+ """
1438
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
1439
+
1440
+ Args:
1441
+ config: DeepseekV2Config
1442
+ """
1443
+
1444
+ def __init__(self, config: DeepseekV2Config):
1445
+ super().__init__(config)
1446
+ self.padding_idx = config.pad_token_id
1447
+ self.vocab_size = config.vocab_size
1448
+
1449
+ self.embed_tokens = nn.Embedding(
1450
+ config.vocab_size, config.hidden_size, self.padding_idx
1451
+ )
1452
+ self.layers = nn.ModuleList(
1453
+ [
1454
+ DeepseekV2DecoderLayer(config, layer_idx)
1455
+ for layer_idx in range(config.num_hidden_layers)
1456
+ ]
1457
+ )
1458
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1459
+ self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1460
+
1461
+ self.gradient_checkpointing = False
1462
+ # Initialize weights and apply final processing
1463
+ self.post_init()
1464
+
1465
+ def get_input_embeddings(self):
1466
+ return self.embed_tokens
1467
+
1468
+ def set_input_embeddings(self, value):
1469
+ self.embed_tokens = value
1470
+
1471
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1472
+ def forward(
1473
+ self,
1474
+ input_ids: torch.LongTensor = None,
1475
+ attention_mask: Optional[torch.Tensor] = None,
1476
+ position_ids: Optional[torch.LongTensor] = None,
1477
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1478
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1479
+ use_cache: Optional[bool] = None,
1480
+ output_attentions: Optional[bool] = None,
1481
+ output_hidden_states: Optional[bool] = None,
1482
+ return_dict: Optional[bool] = None,
1483
+ cache_position: Optional[torch.LongTensor] = None
1484
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1485
+ output_attentions = (
1486
+ output_attentions
1487
+ if output_attentions is not None
1488
+ else self.config.output_attentions
1489
+ )
1490
+ output_hidden_states = (
1491
+ output_hidden_states
1492
+ if output_hidden_states is not None
1493
+ else self.config.output_hidden_states
1494
+ )
1495
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1496
+
1497
+ return_dict = (
1498
+ return_dict if return_dict is not None else self.config.use_return_dict
1499
+ )
1500
+
1501
+ # retrieve input_ids and inputs_embeds
1502
+ if input_ids is not None and inputs_embeds is not None:
1503
+ raise ValueError(
1504
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1505
+ )
1506
+ elif input_ids is not None:
1507
+ batch_size, seq_length = input_ids.shape[:2]
1508
+ elif inputs_embeds is not None:
1509
+ batch_size, seq_length = inputs_embeds.shape[:2]
1510
+ else:
1511
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1512
+
1513
+ if self.gradient_checkpointing and self.training:
1514
+ if use_cache:
1515
+ logger.warning_once(
1516
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1517
+ )
1518
+ use_cache = False
1519
+
1520
+ past_key_values_length = 0
1521
+ if use_cache:
1522
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1523
+ if use_legacy_cache:
1524
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1525
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1526
+
1527
+ if position_ids is None:
1528
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1529
+ position_ids = torch.arange(
1530
+ past_key_values_length,
1531
+ seq_length + past_key_values_length,
1532
+ dtype=torch.long,
1533
+ device=device,
1534
+ )
1535
+ position_ids = position_ids.unsqueeze(0)
1536
+
1537
+ if inputs_embeds is None:
1538
+ inputs_embeds = self.embed_tokens(input_ids)
1539
+
1540
+ if self._use_flash_attention_2:
1541
+ # 2d mask is passed through the layers
1542
+ attention_mask = (
1543
+ attention_mask
1544
+ if (attention_mask is not None and 0 in attention_mask)
1545
+ else None
1546
+ )
1547
+ else:
1548
+ # 4d mask is passed through the layers
1549
+ attention_mask = _prepare_4d_causal_attention_mask(
1550
+ attention_mask,
1551
+ (batch_size, seq_length),
1552
+ inputs_embeds,
1553
+ past_key_values_length,
1554
+ )
1555
+
1556
+ # embed positions
1557
+ hidden_states = inputs_embeds
1558
+
1559
+ # decoder layers
1560
+ all_hidden_states = () if output_hidden_states else None
1561
+ all_self_attns = () if output_attentions else None
1562
+ next_decoder_cache = None
1563
+
1564
+ for decoder_layer in self.layers:
1565
+ if output_hidden_states:
1566
+ all_hidden_states += (hidden_states,)
1567
+
1568
+ if self.gradient_checkpointing and self.training:
1569
+ layer_outputs = self._gradient_checkpointing_func(
1570
+ decoder_layer.__call__,
1571
+ hidden_states,
1572
+ attention_mask,
1573
+ position_ids,
1574
+ past_key_values,
1575
+ output_attentions,
1576
+ use_cache,
1577
+ )
1578
+ else:
1579
+ layer_outputs = decoder_layer(
1580
+ hidden_states,
1581
+ attention_mask=attention_mask,
1582
+ position_ids=position_ids,
1583
+ past_key_value=past_key_values,
1584
+ output_attentions=output_attentions,
1585
+ use_cache=use_cache,
1586
+ )
1587
+
1588
+ hidden_states = layer_outputs[0]
1589
+
1590
+ if use_cache:
1591
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1592
+
1593
+ if output_attentions:
1594
+ all_self_attns += (layer_outputs[1],)
1595
+
1596
+ hidden_states = self.norm(hidden_states)
1597
+
1598
+ # add hidden states from the last decoder layer
1599
+ if output_hidden_states:
1600
+ all_hidden_states += (hidden_states,)
1601
+
1602
+ next_cache = None
1603
+ if use_cache:
1604
+ next_cache = (
1605
+ next_decoder_cache.to_legacy_cache()
1606
+ if use_legacy_cache
1607
+ else next_decoder_cache
1608
+ )
1609
+ if not return_dict:
1610
+ return tuple(
1611
+ v
1612
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1613
+ if v is not None
1614
+ )
1615
+ return BaseModelOutputWithPast(
1616
+ last_hidden_state=hidden_states,
1617
+ past_key_values=next_cache,
1618
+ hidden_states=all_hidden_states,
1619
+ attentions=all_self_attns,
1620
+ )
1621
+
1622
+
1623
+ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
1624
+ _tied_weights_keys = ["lm_head.weight"]
1625
+
1626
+ def __init__(self, config):
1627
+ super().__init__(config)
1628
+ self.model = DeepseekV2Model(config)
1629
+ self.vocab_size = config.vocab_size
1630
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1631
+
1632
+ # Initialize weights and apply final processing
1633
+ self.post_init()
1634
+
1635
+ def get_input_embeddings(self):
1636
+ return self.model.embed_tokens
1637
+
1638
+ def set_input_embeddings(self, value):
1639
+ self.model.embed_tokens = value
1640
+
1641
+ def get_output_embeddings(self):
1642
+ return self.lm_head
1643
+
1644
+ def set_output_embeddings(self, new_embeddings):
1645
+ self.lm_head = new_embeddings
1646
+
1647
+ def set_decoder(self, decoder):
1648
+ self.model = decoder
1649
+
1650
+ def get_decoder(self):
1651
+ return self.model
1652
+
1653
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1654
+ @replace_return_docstrings(
1655
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1656
+ )
1657
+ def forward(
1658
+ self,
1659
+ input_ids: torch.LongTensor = None,
1660
+ attention_mask: Optional[torch.Tensor] = None,
1661
+ position_ids: Optional[torch.LongTensor] = None,
1662
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1663
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1664
+ labels: Optional[torch.LongTensor] = None,
1665
+ use_cache: Optional[bool] = None,
1666
+ output_attentions: Optional[bool] = None,
1667
+ output_hidden_states: Optional[bool] = None,
1668
+ return_dict: Optional[bool] = None,
1669
+ cache_position: Optional[torch.LongTensor] = None
1670
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1671
+ r"""
1672
+ Args:
1673
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1674
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1675
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1676
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1677
+
1678
+ Returns:
1679
+
1680
+ Example:
1681
+
1682
+ ```python
1683
+ >>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
1684
+
1685
+ >>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1686
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1687
+
1688
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1689
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1690
+
1691
+ >>> # Generate
1692
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1693
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1694
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1695
+ ```"""
1696
+ output_attentions = (
1697
+ output_attentions
1698
+ if output_attentions is not None
1699
+ else self.config.output_attentions
1700
+ )
1701
+ output_hidden_states = (
1702
+ output_hidden_states
1703
+ if output_hidden_states is not None
1704
+ else self.config.output_hidden_states
1705
+ )
1706
+ return_dict = (
1707
+ return_dict if return_dict is not None else self.config.use_return_dict
1708
+ )
1709
+
1710
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1711
+ outputs = self.model(
1712
+ input_ids=input_ids,
1713
+ attention_mask=attention_mask,
1714
+ position_ids=position_ids,
1715
+ past_key_values=past_key_values,
1716
+ inputs_embeds=inputs_embeds,
1717
+ use_cache=use_cache,
1718
+ output_attentions=output_attentions,
1719
+ output_hidden_states=output_hidden_states,
1720
+ return_dict=return_dict,
1721
+ cache_position=cache_position
1722
+ )
1723
+
1724
+ hidden_states = outputs[0]
1725
+ logits = self.lm_head(hidden_states)
1726
+ logits = logits.float()
1727
+
1728
+ loss = None
1729
+ if labels is not None:
1730
+ # Shift so that tokens < n predict n
1731
+ shift_logits = logits[..., :-1, :].contiguous()
1732
+ shift_labels = labels[..., 1:].contiguous()
1733
+ # Flatten the tokens
1734
+ loss_fct = CrossEntropyLoss()
1735
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1736
+ shift_labels = shift_labels.view(-1)
1737
+ # Enable model parallelism
1738
+ shift_labels = shift_labels.to(shift_logits.device)
1739
+ loss = loss_fct(shift_logits, shift_labels)
1740
+
1741
+ if not return_dict:
1742
+ output = (logits,) + outputs[1:]
1743
+ return (loss,) + output if loss is not None else output
1744
+
1745
+ return CausalLMOutputWithPast(
1746
+ loss=loss,
1747
+ logits=logits,
1748
+ past_key_values=outputs.past_key_values,
1749
+ hidden_states=outputs.hidden_states,
1750
+ attentions=outputs.attentions,
1751
+ )
1752
+
1753
+ def prepare_inputs_for_generation(
1754
+ self,
1755
+ input_ids,
1756
+ past_key_values=None,
1757
+ attention_mask=None,
1758
+ inputs_embeds=None,
1759
+ **kwargs,
1760
+ ):
1761
+ past_length = 0
1762
+ if past_key_values is not None:
1763
+ if isinstance(past_key_values, Cache):
1764
+ cache_length = past_key_values.get_seq_length()
1765
+ past_length = past_key_values.seen_tokens
1766
+ max_cache_length = past_key_values.get_max_length()
1767
+ else:
1768
+ cache_length = past_length = past_key_values[0][0].shape[2]
1769
+ max_cache_length = None
1770
+
1771
+ # Keep only the unprocessed tokens:
1772
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1773
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1774
+ # input)
1775
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1776
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
1777
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1778
+ # input_ids based on the past_length.
1779
+ elif past_length < input_ids.shape[1]:
1780
+ input_ids = input_ids[:, past_length:]
1781
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1782
+
1783
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1784
+ if (
1785
+ max_cache_length is not None
1786
+ and attention_mask is not None
1787
+ and cache_length + input_ids.shape[1] > max_cache_length
1788
+ ):
1789
+ attention_mask = attention_mask[:, -max_cache_length:]
1790
+
1791
+ position_ids = kwargs.get("position_ids", None)
1792
+ if attention_mask is not None and position_ids is None:
1793
+ # create position_ids on the fly for batch generation
1794
+ position_ids = attention_mask.long().cumsum(-1) - 1
1795
+ position_ids.masked_fill_(attention_mask == 0, 1)
1796
+ if past_key_values:
1797
+ position_ids = position_ids[:, -input_ids.shape[1]:]
1798
+
1799
+ if self.generation_config.cache_implementation == "static":
1800
+ # generation with static cache
1801
+ cache_position = kwargs.get("cache_position", None)
1802
+ if cache_position is None:
1803
+ past_length = 0
1804
+ else:
1805
+ past_length = cache_position[-1] + 1
1806
+ input_ids = input_ids[:, past_length:]
1807
+ position_ids = position_ids[:, past_length:]
1808
+
1809
+ # TODO @gante we should only keep a `cache_position` in generate, and do +=1.
1810
+ # same goes for position ids. Could also help with continued generation.
1811
+ cache_position = torch.arange(past_length, past_length + position_ids.shape[-1], device=position_ids.device)
1812
+
1813
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1814
+ if inputs_embeds is not None and past_key_values is None:
1815
+ model_inputs = {"inputs_embeds": inputs_embeds}
1816
+ else:
1817
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1818
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
1819
+ # TODO: use `next_tokens` directly instead.
1820
+ model_inputs = {"input_ids": input_ids.contiguous()}
1821
+
1822
+ model_inputs.update(
1823
+ {
1824
+ "position_ids": position_ids.contiguous(),
1825
+ "cache_position": cache_position,
1826
+ "past_key_values": past_key_values,
1827
+ "use_cache": kwargs.get("use_cache"),
1828
+ "attention_mask": attention_mask,
1829
+ }
1830
+ )
1831
+ return model_inputs
1832
+
1833
+ @staticmethod
1834
+ def _reorder_cache(past_key_values, beam_idx):
1835
+ reordered_past = ()
1836
+ for layer_past in past_key_values:
1837
+ reordered_past += (
1838
+ tuple(
1839
+ past_state.index_select(0, beam_idx.to(past_state.device))
1840
+ for past_state in layer_past
1841
+ ),
1842
+ )
1843
+ return reordered_past
1844
+
1845
+
1846
+ @add_start_docstrings(
1847
+ """
1848
+ The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
1849
+
1850
+ [`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1851
+ (e.g. GPT-2) do.
1852
+
1853
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1854
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1855
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1856
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1857
+ each row of the batch).
1858
+ """,
1859
+ DeepseekV2_START_DOCSTRING,
1860
+ )
1861
+ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
1862
+ def __init__(self, config):
1863
+ super().__init__(config)
1864
+ self.num_labels = config.num_labels
1865
+ self.model = DeepseekV2Model(config)
1866
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1867
+
1868
+ # Initialize weights and apply final processing
1869
+ self.post_init()
1870
+
1871
+ def get_input_embeddings(self):
1872
+ return self.model.embed_tokens
1873
+
1874
+ def set_input_embeddings(self, value):
1875
+ self.model.embed_tokens = value
1876
+
1877
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1878
+ def forward(
1879
+ self,
1880
+ input_ids: torch.LongTensor = None,
1881
+ attention_mask: Optional[torch.Tensor] = None,
1882
+ position_ids: Optional[torch.LongTensor] = None,
1883
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1884
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1885
+ labels: Optional[torch.LongTensor] = None,
1886
+ use_cache: Optional[bool] = None,
1887
+ output_attentions: Optional[bool] = None,
1888
+ output_hidden_states: Optional[bool] = None,
1889
+ return_dict: Optional[bool] = None,
1890
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1891
+ r"""
1892
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1893
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1894
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1895
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1896
+ """
1897
+ return_dict = (
1898
+ return_dict if return_dict is not None else self.config.use_return_dict
1899
+ )
1900
+
1901
+ transformer_outputs = self.model(
1902
+ input_ids,
1903
+ attention_mask=attention_mask,
1904
+ position_ids=position_ids,
1905
+ past_key_values=past_key_values,
1906
+ inputs_embeds=inputs_embeds,
1907
+ use_cache=use_cache,
1908
+ output_attentions=output_attentions,
1909
+ output_hidden_states=output_hidden_states,
1910
+ return_dict=return_dict,
1911
+ )
1912
+ hidden_states = transformer_outputs[0]
1913
+ logits = self.score(hidden_states)
1914
+
1915
+ if input_ids is not None:
1916
+ batch_size = input_ids.shape[0]
1917
+ else:
1918
+ batch_size = inputs_embeds.shape[0]
1919
+
1920
+ if self.config.pad_token_id is None and batch_size != 1:
1921
+ raise ValueError(
1922
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1923
+ )
1924
+ if self.config.pad_token_id is None:
1925
+ sequence_lengths = -1
1926
+ else:
1927
+ if input_ids is not None:
1928
+ sequence_lengths = (
1929
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1930
+ ).to(logits.device)
1931
+ else:
1932
+ sequence_lengths = -1
1933
+
1934
+ pooled_logits = logits[
1935
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1936
+ ]
1937
+
1938
+ loss = None
1939
+ if labels is not None:
1940
+ labels = labels.to(logits.device)
1941
+ if self.config.problem_type is None:
1942
+ if self.num_labels == 1:
1943
+ self.config.problem_type = "regression"
1944
+ elif self.num_labels > 1 and (
1945
+ labels.dtype == torch.long or labels.dtype == torch.int
1946
+ ):
1947
+ self.config.problem_type = "single_label_classification"
1948
+ else:
1949
+ self.config.problem_type = "multi_label_classification"
1950
+
1951
+ if self.config.problem_type == "regression":
1952
+ loss_fct = MSELoss()
1953
+ if self.num_labels == 1:
1954
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1955
+ else:
1956
+ loss = loss_fct(pooled_logits, labels)
1957
+ elif self.config.problem_type == "single_label_classification":
1958
+ loss_fct = CrossEntropyLoss()
1959
+ loss = loss_fct(
1960
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1961
+ )
1962
+ elif self.config.problem_type == "multi_label_classification":
1963
+ loss_fct = BCEWithLogitsLoss()
1964
+ loss = loss_fct(pooled_logits, labels)
1965
+ if not return_dict:
1966
+ output = (pooled_logits,) + transformer_outputs[1:]
1967
+ return ((loss,) + output) if loss is not None else output
1968
+
1969
+ return SequenceClassifierOutputWithPast(
1970
+ loss=loss,
1971
+ logits=pooled_logits,
1972
+ past_key_values=transformer_outputs.past_key_values,
1973
+ hidden_states=transformer_outputs.hidden_states,
1974
+ attentions=transformer_outputs.attentions,
1975
+ )
deepseek_vl2/models/modeling_deepseek_vl_v2.py ADDED
@@ -0,0 +1,697 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from attrdict import AttrDict
2
+ from dataclasses import dataclass
3
+ import logging
4
+ import gc
5
+
6
+ from einops import rearrange, repeat
7
+ from typing import Optional, List, Tuple, Callable, Union
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+
13
+ from transformers.utils import (
14
+ add_start_docstrings,
15
+ add_start_docstrings_to_model_forward,
16
+ )
17
+ from transformers.modeling_outputs import ModelOutput
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers import (
20
+ AutoConfig,
21
+ AutoModelForCausalLM,
22
+ PreTrainedModel
23
+ )
24
+ from transformers.utils import logging
25
+
26
+ from .siglip_vit import VisionTransformer
27
+ from .configuration_deepseek import DeepseekV2Config
28
+ from .modeling_deepseek import DeepseekV2ForCausalLM
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ class MlpProjector(nn.Module):
35
+
36
+ def __init__(self, cfg):
37
+
38
+ super().__init__()
39
+
40
+ self.cfg = cfg
41
+
42
+ if cfg.projector_type == "identity":
43
+ modules = nn.Identity()
44
+
45
+ elif cfg.projector_type == "linear":
46
+ modules = nn.Linear(cfg.input_dim, cfg.n_embed)
47
+
48
+ elif cfg.projector_type == "mlp_gelu":
49
+ mlp_depth = cfg.depth
50
+ modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
51
+ for _ in range(1, mlp_depth):
52
+ modules.append(nn.GELU())
53
+ modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
54
+ modules = nn.Sequential(*modules)
55
+
56
+ elif cfg.projector_type == "downsample_mlp_gelu":
57
+ mlp_depth = cfg.depth
58
+ mlp_ratio = cfg.mlp_ratio
59
+ modules = [nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)]
60
+ for _ in range(1, mlp_depth - 1):
61
+ modules.append(nn.GELU())
62
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
63
+ modules.append(nn.GELU())
64
+ modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
65
+ modules = nn.Sequential(*modules)
66
+
67
+ else:
68
+ raise ValueError(f"Unknown projector type: {cfg.projector_type}")
69
+
70
+ if cfg.token_pooling:
71
+ self.token_pooling_layer = nn.Linear(cfg.input_dim * 4, cfg.input_dim)
72
+
73
+ self.layers = modules
74
+
75
+ def forward(self, x):
76
+ if self.cfg.token_pooling:
77
+ batch_size, wxh, channels = x.shape
78
+ w = h = int(wxh ** 0.5)
79
+ x = x.view(batch_size, w, h, channels)
80
+ x = x.permute(0, 3, 1, 2)
81
+ # import ipdb; ipdb.set_trace()
82
+ patches = x.unfold(2, 2, 2).unfold(3, 2, 2)
83
+ batch_size, channels, h_patches, w_patches, _, _ = patches.size()
84
+ # 在通道维度上拼接
85
+ patches = patches.contiguous().view(batch_size, channels, h_patches * w_patches, -1)
86
+
87
+ # 通过线性层
88
+ patches = patches.permute(0, 2, 1, 3).contiguous()
89
+ patches = patches.view(batch_size, h_patches * w_patches, channels * 4)
90
+
91
+ x = self.token_pooling_layer(patches)
92
+
93
+ elif self.cfg.projector_type == 'downsample_mlp_gelu':
94
+ bs, hw, input_dim = x.shape
95
+ h = w = int((hw) ** 0.5)
96
+
97
+ """compute padding"""
98
+ if h % self.cfg.downsample_ratio:
99
+ pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
100
+ else:
101
+ pad = 0
102
+ x = x.reshape(bs, h, w, input_dim)
103
+ if pad > 0:
104
+ x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
105
+
106
+ """4 to 1 concat"""
107
+ x = x.permute(0, 3, 1, 2) # B, C, H, W
108
+ x = F.unfold(x, kernel_size=self.cfg.downsample_ratio, stride=self.cfg.downsample_ratio,
109
+ padding=0) # B, C*4, HW // 4
110
+ x = x.permute(0, 2, 1)
111
+
112
+ return self.layers(x)
113
+
114
+
115
+ class VisionEncoderConfig(PretrainedConfig):
116
+ model_type: str = "vision"
117
+
118
+ model_name: str = "siglip_large_patch16_384"
119
+ image_size: int = 384
120
+ patch_size: int = 16
121
+ width: int = 1024
122
+ layers: int = 24
123
+ heads: int = 16
124
+ mlp_ratio: int = 4
125
+ global_pool: str = "map"
126
+ ignore_head: bool = True
127
+ class_token: bool = False
128
+ num_classes: int = 0
129
+ use_checkpoint: bool = False
130
+ weight_init: str = "skip"
131
+ deterministic: bool = False
132
+ num_recomputing_layers: int = 0
133
+
134
+ def __init__(
135
+ self,
136
+ model_name: str = "siglip_large_patch16_384",
137
+ image_size: int = 384,
138
+ patch_size: int = 16,
139
+ width: int = 1024,
140
+ layers: int = 24,
141
+ heads: int = 16,
142
+ mlp_ratio: int = 4,
143
+ global_pool: str = "map",
144
+ ignore_head: bool = True,
145
+ class_token: bool = False,
146
+ num_classes: int = 0,
147
+ use_checkpoint: bool = False,
148
+ **kwargs
149
+ ):
150
+ self.model_name = model_name
151
+ self.image_size = image_size
152
+ self.patch_size = patch_size
153
+ self.width = width
154
+ self.layers = layers
155
+ self.heads = heads
156
+ self.mlp_ratio = mlp_ratio
157
+ self.global_pool = global_pool
158
+ self.ignore_head = ignore_head
159
+ self.class_token = class_token
160
+ self.num_classes = num_classes
161
+ self.use_checkpoint = use_checkpoint
162
+
163
+ super().__init__(**kwargs)
164
+
165
+
166
+ class MlpProjectorConfig(PretrainedConfig):
167
+ model_type = "mlp_projector"
168
+ projector_type: str = "downsample_mlp_gelu"
169
+ input_dim: int = 1152
170
+ n_embed: int = 2048
171
+ depth: int = 2
172
+ mlp_ratio: int = 1
173
+ downsample_ratio: int = 2
174
+ token_pooling: bool = False
175
+
176
+ def __init__(
177
+ self,
178
+ projector_type: str = "downsample_mlp_gelu",
179
+ input_dim: int = 1152,
180
+ n_embed: int = 2048,
181
+ depth: int = 2,
182
+ mlp_ratio: int = 1,
183
+ downsample_ratio: int = 2,
184
+ **kwargs
185
+ ):
186
+ self.projector_type = projector_type
187
+ self.input_dim = input_dim
188
+ self.n_embed = n_embed
189
+ self.depth = depth
190
+ self.mlp_ratio = mlp_ratio
191
+ self.downsample_ratio = downsample_ratio
192
+
193
+ super().__init__(**kwargs)
194
+
195
+
196
+ @dataclass
197
+ class DeepSeekVLV2CausalLMOutputWithPast(ModelOutput):
198
+ """
199
+ Base class for DeepSeek-VL2 causal language model (or autoregressive) outputs.
200
+
201
+ Args:
202
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
203
+ Language modeling loss (for next-token prediction).
204
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
205
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
206
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
207
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
208
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
209
+
210
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
211
+ `past_key_values` input) to speed up sequential decoding.
212
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
213
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
214
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
215
+
216
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
217
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
218
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
219
+ sequence_length)`.
220
+
221
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
222
+ heads.
223
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
224
+ The rope index difference between sequence length and multimodal rope.
225
+ """
226
+
227
+ loss: Optional[torch.FloatTensor] = None
228
+ logits: torch.FloatTensor = None
229
+ past_key_values: Optional[List[torch.FloatTensor]] = None
230
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
231
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
232
+ rope_deltas: Optional[torch.LongTensor] = None
233
+
234
+
235
+ class DeepseekVLV2Config(PretrainedConfig):
236
+ model_type = "deepseek_vl_v2"
237
+ vision_config: VisionEncoderConfig
238
+ projector_config: MlpProjectorConfig
239
+ language_config: DeepseekV2Config
240
+
241
+ tile_tag: str = "2D"
242
+ global_view_pos: str = "head"
243
+ candidate_resolutions: Tuple[Tuple[int, int]] = ((384, 384),)
244
+
245
+ def __init__(
246
+ self,
247
+ tile_tag: str = "tile_tag",
248
+ global_view_pos: str = "head",
249
+ candidate_resolutions: Tuple[Tuple[int, int]] = ((384, 384),),
250
+ **kwargs
251
+ ):
252
+ super().__init__(**kwargs)
253
+
254
+ vision_config = kwargs.get("vision_config", {})
255
+ self.vision_config = VisionEncoderConfig(**vision_config)
256
+
257
+ projector_config = kwargs.get("projector_config", {})
258
+ self.projector_config = MlpProjectorConfig(**projector_config)
259
+
260
+ language_config = kwargs.get("language_config", {})
261
+ if isinstance(language_config, DeepseekV2Config):
262
+ self.language_config = language_config
263
+ else:
264
+ self.language_config = DeepseekV2Config(**language_config)
265
+
266
+ self.tile_tag = tile_tag
267
+ self.global_view_pos = global_view_pos
268
+ self.candidate_resolutions = candidate_resolutions
269
+
270
+
271
+ class DeepseekVLV2PreTrainedModel(PreTrainedModel):
272
+ config_class = DeepseekVLV2Config
273
+ base_model_prefix = "deepseek_vl_v2"
274
+ _no_split_modules = []
275
+ _skip_keys_device_placement = "past_key_values"
276
+
277
+
278
+ class DeepseekVLV2ForCausalLM(DeepseekVLV2PreTrainedModel):
279
+
280
+ def __init__(self, config: DeepseekVLV2Config):
281
+ super().__init__(config)
282
+
283
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
284
+
285
+ # ----------- vision encoder ------------
286
+ vision_config = config.vision_config
287
+ self.vision = VisionTransformer(
288
+ img_size=vision_config.image_size,
289
+ patch_size=vision_config.patch_size,
290
+ embed_dim=vision_config.width,
291
+ depth=vision_config.layers,
292
+ num_heads=vision_config.heads,
293
+ mlp_ratio=vision_config.mlp_ratio,
294
+ class_token=vision_config.class_token,
295
+ global_pool=vision_config.global_pool,
296
+ ignore_head=vision_config.ignore_head,
297
+ weight_init=vision_config.weight_init,
298
+ num_classes=0,
299
+ deterministic=vision_config.deterministic,
300
+ num_recomputing_layers=vision_config.num_recomputing_layers
301
+ )
302
+
303
+ # ----------- vl projector ------------
304
+ projector_config = config.projector_config
305
+ self.projector = MlpProjector(projector_config)
306
+
307
+ # image token format 形式
308
+ # FIXME 目前tile tag & global_view_pos的默认取值都是之前的实验策略;后续应当去掉默认取值,改为没有取值就raise error
309
+ self.tile_tag = config.tile_tag
310
+ self.global_view_pos = config.global_view_pos
311
+
312
+ # 用于format image token sequence的特殊token
313
+ embed_std = 1 / torch.sqrt(torch.tensor(projector_config.n_embed, dtype=torch.float32))
314
+ if self.tile_tag == "2D":
315
+ # <|view_separator|>, <|\n|>
316
+ self.image_newline = nn.Parameter(torch.randn(projector_config.n_embed) * embed_std)
317
+ # fix the typo: view_seperater
318
+ self.view_seperator = nn.Parameter(torch.randn(projector_config.n_embed) * embed_std)
319
+ elif self.tile_tag == "1D":
320
+ # <|tile_x|>, <|tile_global|>
321
+ candidate_resolutions = config.candidate_resolutions
322
+ if len(candidate_resolutions) == 0:
323
+ raise ValueError(
324
+ f"len(candidate_resolutions) should be larger than 0, but got {len(candidate_resolutions)}")
325
+ tile_variants_num = len(candidate_resolutions)
326
+ self.tile_indicators = nn.Parameter(
327
+ torch.randn(size=(tile_variants_num + 1, config.aligner.params.n_embed)) * embed_std
328
+ )
329
+ else:
330
+ raise ValueError(f"tile tag should be either 1D or 2D, but got {self.tile_tag}")
331
+
332
+ # ----------- language model ------------
333
+ language_config = config.language_config
334
+ self.language = DeepseekV2ForCausalLM(language_config)
335
+
336
+ def prepare_inputs_embeds(
337
+ self,
338
+ input_ids: torch.LongTensor,
339
+ images: Optional[torch.FloatTensor] = None,
340
+ images_seq_mask: Optional[torch.LongTensor] = None,
341
+ images_spatial_crop: Optional[torch.LongTensor] = None,
342
+ **ignore_kwargs
343
+ ):
344
+ """
345
+
346
+ Args:
347
+ input_ids (torch.LongTensor): [b, T]
348
+ images (torch.FloatTensor): [b, max_n_images, 3, height, width]
349
+ images_seq_mask (torch.BoolTensor): [b, T]
350
+ images_spatial_crop (torch.LongTensor): [b, max_n_images, 2]
351
+
352
+ Returns:
353
+ input_embeds (torch.Tensor): [b, T, D]
354
+ """
355
+
356
+ if images is None or images_spatial_crop.sum() == 0:
357
+ return self.language.get_input_embeddings()(input_ids)
358
+
359
+ bs, max_n_images, _ = images_spatial_crop.shape
360
+ batch_num_tiles = [0 for _ in range(bs)]
361
+ total_tiles = []
362
+ for idx in range(bs):
363
+ for jdx in range(max_n_images):
364
+ num_width_tiles, num_height_tiles = images_spatial_crop[idx, jdx]
365
+ if num_width_tiles == 0 or num_height_tiles == 0:
366
+ break
367
+ batch_num_tiles[idx] += (1 + num_width_tiles * num_height_tiles)
368
+
369
+ total_tiles.append(images[idx, :batch_num_tiles[idx]])
370
+
371
+ # [batch_all_tiles, 3, height, width]
372
+ total_tiles = torch.cat(total_tiles, dim=0)
373
+ assert total_tiles.shape[0] == sum(batch_num_tiles)
374
+ if total_tiles.shape[0] == 0:
375
+ return self.language.get_input_embeddings()(input_ids)
376
+
377
+ # [batch_all_tiles, vit_seq_len, c]
378
+ images_feature = self.vision(total_tiles)
379
+
380
+ # [batch_all_tiles, hw, D]
381
+ images_embeds = self.projector(images_feature)
382
+ _, hw, n_dim = images_embeds.shape
383
+ h = w = int(hw ** 0.5)
384
+
385
+ # put image tokens into the input_embeds, [b, T, D]
386
+ input_embeds = self.language.get_input_embeddings()(input_ids)
387
+
388
+ # 根据self.tile_tag & self.global_view_pos填充image token sequence
389
+ tile_index = 0
390
+ for idx in range(images_spatial_crop.shape[0]):
391
+ images_in_this_batch = []
392
+ for jdx in range(images_spatial_crop.shape[1]):
393
+
394
+ # extra global & local features
395
+ num_width_tiles, num_height_tiles = images_spatial_crop[idx, jdx]
396
+ if num_width_tiles == 0 or num_height_tiles == 0:
397
+ break
398
+
399
+ num_tiles_in_image = num_width_tiles * num_height_tiles
400
+
401
+ # [hw, D]
402
+ global_features = images_embeds[tile_index]
403
+
404
+ # [num_height_tiles * num_width_tiles, hw, D]
405
+ local_features = images_embeds[tile_index + 1: tile_index + 1 + num_tiles_in_image]
406
+
407
+ tile_index += num_tiles_in_image + 1
408
+
409
+ # format global and local features
410
+ if self.tile_tag == "2D":
411
+
412
+ # ----------------- global view add newline -----------------
413
+ # [hw, D] -> [h, w, D]
414
+ global_features = global_features.view(h, w, n_dim)
415
+ # [D] -> [h, 1, D]
416
+ new_lines_in_global = repeat(self.image_newline, "d -> h 1 d", h=h)
417
+ # cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D]
418
+ global_features = torch.cat([global_features, new_lines_in_global], dim=1)
419
+ # [h, w + 1, D] -> [h * (w + 1), D]
420
+ global_features = global_features.view(-1, n_dim)
421
+
422
+ # ----------------- local view add newline -----------------
423
+ # [num_height_tiles * num_width_tiles, h * w, D] -> [num_height_tiles * h, num_width_tiles * w, D]
424
+ local_features = rearrange(
425
+ local_features,
426
+ "(th tw) (h w) d -> (th h) (tw w) d",
427
+ th=num_height_tiles,
428
+ tw=num_width_tiles,
429
+ h=h,
430
+ w=w
431
+ )
432
+
433
+ # [D] -> [num_height_tiles * h, 1, D]
434
+ new_lines_in_local = repeat(
435
+ self.image_newline,
436
+ "d -> (th h) 1 d",
437
+ th=num_height_tiles,
438
+ h=h
439
+ )
440
+
441
+ # [num_height_tiles * h, num_width_tiles * w + 1, D]
442
+ local_features = torch.cat([local_features, new_lines_in_local], dim=1)
443
+
444
+ # [num_height_tiles * h, num_width_tiles * w + 1, D]
445
+ # --> [(num_height_tiles * h) * (num_width_tiles * w + 1), D]
446
+ local_features = local_features.view(-1, n_dim)
447
+
448
+ # ----------------- merge global and local tiles -----------------
449
+ if self.global_view_pos == "head":
450
+ global_local_features = torch.cat(
451
+ [global_features, self.view_seperator[None, :], local_features], dim=0)
452
+ else:
453
+ global_local_features = torch.cat(
454
+ [local_features, self.view_seperator[None, :], global_features], dim=0)
455
+
456
+ else:
457
+ # abandoned,实际上不会走这个逻辑
458
+ global_features = torch.cat(
459
+ [self.tile_indicators[0:1], global_features], dim=0
460
+ )
461
+ local_features = torch.cat(
462
+ [self.tile_indicators[1:num_tiles_in_image + 1].unsqueeze(1), local_features], dim=1
463
+ )
464
+ local_features = rearrange(local_features, 'crop_num hw d -> (crop_num hw) d')
465
+
466
+ if self.global_view_pos == "head":
467
+ global_local_features = torch.cat([global_features, local_features], dim=0)
468
+ else:
469
+ global_local_features = torch.cat([local_features, global_features], dim=0)
470
+
471
+ images_in_this_batch.append(global_local_features)
472
+
473
+ if len(images_in_this_batch) > 0:
474
+ images_in_this_batch = torch.cat(images_in_this_batch, dim=0)
475
+ input_embeds[idx].masked_scatter_(images_seq_mask[idx].unsqueeze(-1), images_in_this_batch)
476
+
477
+ return input_embeds
478
+
479
+ @torch.no_grad()
480
+ def incremental_prefilling(
481
+ self,
482
+ input_ids: Optional[torch.LongTensor] = None,
483
+ attention_mask: Optional[torch.Tensor] = None,
484
+ inputs_embeds: Optional[torch.FloatTensor] = None,
485
+
486
+ images: Optional[torch.FloatTensor] = None,
487
+ images_seq_mask: Optional[torch.LongTensor] = None,
488
+ images_spatial_crop: Optional[torch.LongTensor] = None,
489
+ chunk_size: int = 1024
490
+ ):
491
+ if inputs_embeds is None:
492
+ inputs_embeds = self.prepare_inputs_embeds(
493
+ input_ids=input_ids,
494
+ images=images,
495
+ images_seq_mask=images_seq_mask,
496
+ images_spatial_crop=images_spatial_crop,
497
+ )
498
+
499
+ del images
500
+ del images_seq_mask
501
+ del images_spatial_crop
502
+
503
+ if attention_mask is not None:
504
+ attention_mask = attention_mask.to(inputs_embeds.device)
505
+
506
+ self._clear_cuda_cache()
507
+
508
+ bzs, seq_len, _ = inputs_embeds.shape
509
+ past_key_values = None
510
+
511
+ # remain the last token for the next forward
512
+ prefilling_len = seq_len - 1
513
+ for i in range(0, prefilling_len, chunk_size):
514
+ chunk_start = i
515
+ chunk_end = min(i + chunk_size, prefilling_len)
516
+ chunk_inputs_embeds = inputs_embeds[:, chunk_start: chunk_end]
517
+ chunk_attention_mask = attention_mask[:, 0: chunk_end]
518
+ # print(f"start = {chunk_start}, end = {chunk_end}, prefilling_len = {prefilling_len}, seq_len = {seq_len}")
519
+
520
+ # compute position_ids
521
+ if past_key_values is not None:
522
+ position_ids = torch.arange(
523
+ chunk_start,
524
+ chunk_end,
525
+ dtype=torch.long,
526
+ device=inputs_embeds.device
527
+ ).unsqueeze(0)
528
+ past_key_values = self._move_past_key_values_to_gpu(past_key_values, inputs_embeds.device)
529
+ else:
530
+ position_ids = None
531
+
532
+ # chunk-forward
533
+ with torch.no_grad():
534
+ outputs = self.forward(
535
+ inputs_embeds=chunk_inputs_embeds,
536
+ attention_mask=chunk_attention_mask,
537
+ past_key_values=past_key_values,
538
+ position_ids=position_ids,
539
+ use_cache=True,
540
+ )
541
+ # update past_key_values
542
+ past_key_values = outputs.past_key_values
543
+ past_key_values = self._move_past_key_values_to_cpu(past_key_values)
544
+
545
+ del outputs, position_ids
546
+ self._clear_cuda_cache()
547
+
548
+ prefilling_key_values = []
549
+ for layer_past in past_key_values:
550
+ prefilling_key_values.append(
551
+ (
552
+ layer_past[0][:, :, 0: prefilling_len, ...].to(inputs_embeds.device),
553
+ layer_past[1][:, :, 0: prefilling_len, ...].to(inputs_embeds.device),
554
+ )
555
+ )
556
+
557
+ return inputs_embeds, prefilling_key_values
558
+
559
+ def forward(
560
+ self,
561
+ input_ids: Optional[torch.LongTensor] = None,
562
+
563
+ attention_mask: Optional[torch.Tensor] = None,
564
+ position_ids: Optional[torch.LongTensor] = None,
565
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
566
+ inputs_embeds: Optional[torch.FloatTensor] = None,
567
+
568
+ images: Optional[torch.FloatTensor] = None,
569
+ images_seq_mask: Optional[torch.LongTensor] = None,
570
+ images_spatial_crop: Optional[torch.LongTensor] = None,
571
+
572
+ labels: Optional[torch.LongTensor] = None,
573
+ use_cache: Optional[bool] = None,
574
+ output_attentions: Optional[bool] = None,
575
+ output_hidden_states: Optional[bool] = None,
576
+ return_dict: Optional[bool] = None,
577
+ cache_position: Optional[torch.LongTensor] = None,
578
+ ):
579
+
580
+ output_attentions = (
581
+ output_attentions
582
+ if output_attentions is not None
583
+ else self.config.output_attentions
584
+ )
585
+ output_hidden_states = (
586
+ output_hidden_states
587
+ if output_hidden_states is not None
588
+ else self.config.output_hidden_states
589
+ )
590
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
591
+
592
+ return_dict = (
593
+ return_dict if return_dict is not None else self.config.use_return_dict
594
+ )
595
+ if inputs_embeds is None:
596
+ inputs_embeds = self.prepare_inputs_embeds(
597
+ input_ids=input_ids,
598
+ images=images,
599
+ images_seq_mask=images_seq_mask,
600
+ images_spatial_crop=images_spatial_crop,
601
+ )
602
+
603
+ if attention_mask is not None:
604
+ attention_mask = attention_mask.to(inputs_embeds.device)
605
+
606
+ # print(inputs_embeds.shape)
607
+ outputs = self.language.forward(
608
+ input_ids=None,
609
+ attention_mask=attention_mask,
610
+ position_ids=position_ids,
611
+ past_key_values=past_key_values,
612
+ inputs_embeds=inputs_embeds,
613
+ labels=labels,
614
+ use_cache=use_cache,
615
+ output_attentions=output_attentions,
616
+ output_hidden_states=output_hidden_states,
617
+ return_dict=return_dict,
618
+ cache_position=cache_position
619
+ )
620
+
621
+ return outputs
622
+
623
+ def _clear_cuda_cache(self):
624
+ """clear CUDA memory cache"""
625
+ gc.collect()
626
+ if torch.cuda.is_available():
627
+ torch.cuda.empty_cache()
628
+ torch.cuda.synchronize()
629
+
630
+ def _move_past_key_values_to_cpu(self, past_key_values):
631
+ # print(f"past_key_values -> cpu")
632
+ if past_key_values is None:
633
+ return None
634
+ return tuple(tuple(t.cpu() for t in layer) for layer in past_key_values)
635
+
636
+ def _move_past_key_values_to_gpu(self, past_key_values, device="cuda:0"):
637
+ # print(f"past_key_values -> gpu")
638
+ if past_key_values is None:
639
+ return None
640
+ return tuple(tuple(t.to(device) for t in layer) for layer in past_key_values)
641
+
642
+ def prepare_inputs_for_generation(
643
+ self,
644
+ input_ids,
645
+ past_key_values=None,
646
+ inputs_embeds=None,
647
+
648
+ images: Optional[torch.FloatTensor] = None,
649
+ images_seq_mask: Optional[torch.LongTensor] = None,
650
+ images_spatial_crop: Optional[torch.LongTensor] = None,
651
+
652
+ attention_mask=None,
653
+ cache_position=None,
654
+
655
+ pixel_values=None,
656
+ image_sizes=None,
657
+ num_logits_to_keep=None,
658
+ **kwargs,
659
+ ):
660
+ # Overwritten -- in specific circumstances we don't want to forward image inputs to the model
661
+ model_inputs = self.language.prepare_inputs_for_generation(
662
+ input_ids,
663
+ past_key_values=past_key_values,
664
+ inputs_embeds=inputs_embeds,
665
+ attention_mask=attention_mask,
666
+ cache_position=cache_position,
667
+ num_logits_to_keep=num_logits_to_keep,
668
+ **kwargs,
669
+ )
670
+
671
+ # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
672
+ # Otherwise we need pixel values to be passed to model
673
+ cache_position = model_inputs["cache_position"]
674
+ if cache_position[0] == 0:
675
+ model_inputs["images"] = images
676
+ model_inputs["images_seq_mask"] = images_seq_mask
677
+ model_inputs["images_spatial_crop"] = images_spatial_crop
678
+
679
+ return model_inputs
680
+
681
+ @staticmethod
682
+ def _reorder_cache(past_key_values, beam_idx):
683
+ reordered_past = ()
684
+ for layer_past in past_key_values:
685
+ reordered_past += (
686
+ tuple(
687
+ past_state.index_select(0, beam_idx.to(past_state.device))
688
+ for past_state in layer_past
689
+ ),
690
+ )
691
+ return reordered_past
692
+
693
+
694
+ AutoConfig.register("vision", VisionEncoderConfig)
695
+ AutoConfig.register("mlp_projector", MlpProjectorConfig)
696
+ AutoConfig.register("deepseek_vl_v2", DeepseekVLV2Config)
697
+ AutoModelForCausalLM.register(DeepseekVLV2Config, DeepseekVLV2ForCausalLM)
deepseek_vl2/models/processing_deepseek_vl_v2.py ADDED
@@ -0,0 +1,675 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from dataclasses import dataclass
21
+ from typing import Dict, Tuple, List, Literal, Optional
22
+ import math
23
+
24
+ import torch
25
+ from torch.nn.utils.rnn import pad_sequence
26
+ import torchvision.transforms as T
27
+ from transformers import LlamaTokenizerFast
28
+ from transformers.processing_utils import ProcessorMixin
29
+ from PIL import Image, ImageOps
30
+
31
+ from .conversation import get_conv_template
32
+
33
+
34
+ def select_best_resolution(image_size, candidate_resolutions):
35
+ # used for cropping
36
+ original_width, original_height = image_size
37
+ best_fit = None
38
+ max_effective_resolution = 0
39
+ min_wasted_resolution = float("inf")
40
+
41
+ for width, height in candidate_resolutions:
42
+ scale = min(width / original_width, height / original_height)
43
+ downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
44
+ effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
45
+ wasted_resolution = (width * height) - effective_resolution
46
+
47
+ if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
48
+ max_effective_resolution = effective_resolution
49
+ min_wasted_resolution = wasted_resolution
50
+ best_fit = (width, height)
51
+
52
+ return best_fit
53
+
54
+
55
+ class DictOutput(object):
56
+ def keys(self):
57
+ return self.__dict__.keys()
58
+
59
+ def __getitem__(self, item):
60
+ return self.__dict__[item]
61
+
62
+ def __setitem__(self, key, value):
63
+ self.__dict__[key] = value
64
+
65
+
66
+ # 对于inference sample也可以维护input_ids,反正最后不会用到
67
+ @dataclass
68
+ class VLChatProcessorOutput(DictOutput):
69
+ sft_format: str
70
+ input_ids: torch.LongTensor
71
+ target_ids: torch.LongTensor
72
+ images: torch.Tensor
73
+ images_seq_mask: torch.BoolTensor
74
+ images_spatial_crop: torch.LongTensor
75
+ num_image_tokens: List[int]
76
+
77
+ def __len__(self):
78
+ return len(self.input_ids)
79
+
80
+
81
+ @dataclass
82
+ class BatchCollateOutput(DictOutput):
83
+ sft_format: List[str]
84
+ input_ids: torch.LongTensor
85
+ labels: torch.LongTensor
86
+ images: torch.Tensor
87
+ attention_mask: torch.Tensor
88
+ images_seq_mask: torch.BoolTensor
89
+ images_spatial_crop: torch.LongTensor
90
+ seq_lens: List[int]
91
+
92
+ def to(self, device, dtype=torch.bfloat16):
93
+ self.input_ids = self.input_ids.to(device)
94
+ self.labels = self.labels.to(device)
95
+ self.attention_mask = self.attention_mask.to(device)
96
+ self.images_seq_mask = self.images_seq_mask.to(device)
97
+ self.images_spatial_crop = self.images_spatial_crop.to(device)
98
+ self.images = self.images.to(device=device, dtype=dtype)
99
+ return self
100
+
101
+
102
+ class ImageTransform(object):
103
+ def __init__(
104
+ self,
105
+ mean: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
106
+ std: Optional[Tuple[float, float, float]] = (0.5, 0.5, 0.5),
107
+ normalize: bool = True
108
+ ):
109
+ self.mean = mean
110
+ self.std = std
111
+ self.normalize = normalize
112
+
113
+ transform_pipelines = [
114
+ T.ToTensor()
115
+ ]
116
+
117
+ if normalize:
118
+ transform_pipelines.append(T.Normalize(mean, std))
119
+
120
+ self.transform = T.Compose(transform_pipelines)
121
+
122
+ def __call__(self, pil_img: Image.Image):
123
+ x = self.transform(pil_img)
124
+ return x
125
+
126
+
127
+
128
+ class DeepseekVLV2Processor(ProcessorMixin):
129
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
130
+ attributes = ["tokenizer"]
131
+
132
+ def __init__(
133
+ self,
134
+ tokenizer: LlamaTokenizerFast,
135
+ candidate_resolutions: Tuple[Tuple[int, int]],
136
+ patch_size: int,
137
+ downsample_ratio: int,
138
+ image_mean: Tuple[float, float, float] = (0.5, 0.5, 0.5),
139
+ image_std: Tuple[float, float, float] = (0.5, 0.5, 0.5),
140
+ normalize: bool = True,
141
+ image_token: str = "<image>",
142
+ pad_token: str = "<|▁pad▁|>",
143
+ add_special_token: bool = False,
144
+ sft_format: str = "deepseek",
145
+ mask_prompt: bool = True,
146
+ ignore_id: int = -100,
147
+ **kwargs,
148
+ ):
149
+
150
+ self.candidate_resolutions = candidate_resolutions
151
+ self.image_size = candidate_resolutions[0][0]
152
+ self.patch_size = patch_size
153
+ self.image_mean = image_mean
154
+ self.image_std = image_std
155
+ self.normalize = normalize
156
+ self.downsample_ratio = downsample_ratio
157
+
158
+ self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize)
159
+ self.tokenizer = tokenizer
160
+ self.tokenizer.padding_side = 'left' # must set this,padding side with make a difference in batch inference
161
+
162
+ # add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id'
163
+ if tokenizer.pad_token is None:
164
+ self.tokenizer.add_special_tokens({'pad_token': pad_token})
165
+ print(f"Add pad token = ['{pad_token}'] to the tokenizer\n"
166
+ f"{pad_token}:{tokenizer.encode(pad_token, add_special_tokens=False)[0]}")
167
+
168
+ # add image token
169
+ image_token_id = self.tokenizer.vocab.get(image_token)
170
+ if image_token_id is None:
171
+ special_tokens = [image_token]
172
+ special_tokens_dict = {"additional_special_tokens": special_tokens}
173
+ self.tokenizer.add_special_tokens(special_tokens_dict)
174
+ self.image_token_id = self.tokenizer.vocab.get(image_token)
175
+ print(f"Add image token = ['{image_token}'] to the tokenizer\n"
176
+ f"{image_token}:{tokenizer.encode(image_token, add_special_tokens=False)[0]}")
177
+
178
+ # add five special tokens for grounding-related tasks
179
+ # <|ref|>, <|/ref|>, <|det|>, <|/det|>, <|grounding|>
180
+ special_tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>']
181
+ special_tokens_dict = {"additional_special_tokens": special_tokens}
182
+ self.tokenizer.add_special_tokens(special_tokens_dict)
183
+ print(f"Add grounding-related tokens = {special_tokens} to the tokenizer with input_ids\n"
184
+ f"<|ref|>:{tokenizer.encode('<|ref|>', add_special_tokens=False)[0]}\n"
185
+ f"<|/ref|>:{tokenizer.encode('<|/ref|>', add_special_tokens=False)[0]}\n"
186
+ f"<|det|>:{tokenizer.encode('<|det|>', add_special_tokens=False)[0]}\n"
187
+ f"<|/det|>:{tokenizer.encode('<|/det|>', add_special_tokens=False)[0]}\n"
188
+ f"<|grounding|>:{tokenizer.encode('<|grounding|>', add_special_tokens=False)[0]}")
189
+
190
+ # add special tokens for SFT data
191
+ special_tokens = ["<|User|>", "<|Assistant|>"]
192
+ special_tokens_dict = {"additional_special_tokens": special_tokens}
193
+ self.tokenizer.add_special_tokens(special_tokens_dict)
194
+ print(f"Add chat tokens = {special_tokens} to the tokenizer with input_ids\n"
195
+ f"<|User|>:{tokenizer.encode('<|User|>', add_special_tokens=False)[0]}\n"
196
+ f"<|Assistant|>:{tokenizer.encode('<|Assistant|>', add_special_tokens=False)[0]}\n")
197
+
198
+ self.image_token = image_token
199
+ self.pad_token = pad_token
200
+ self.add_special_token = add_special_token
201
+ self.sft_format = sft_format
202
+ self.mask_prompt = mask_prompt
203
+ self.ignore_id = ignore_id
204
+
205
+ super().__init__(
206
+ tokenizer,
207
+ **kwargs,
208
+ )
209
+
210
+ def new_chat_template(self):
211
+ conv = get_conv_template(self.sft_format)
212
+ return conv
213
+
214
+ def format_messages(
215
+ self,
216
+ conversations: List[Dict[str, str]],
217
+ sft_format: str = "deepseek",
218
+ system_prompt: str = "",
219
+ ):
220
+ """
221
+ Applies the SFT template to conversation.
222
+
223
+ Args:
224
+ conversations (List[Dict]): A List of messages.
225
+ sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
226
+ system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
227
+
228
+ Returns:
229
+ sft_prompt (str): The formatted text.
230
+ """
231
+
232
+ conv = get_conv_template(sft_format)
233
+ conv.set_system_message(system_prompt)
234
+ for message in conversations:
235
+ conv.append_message(message["role"], message["content"].strip())
236
+ sft_prompt = conv.get_prompt().strip()
237
+
238
+ return sft_prompt
239
+
240
+ def format_messages_v2(self, messages, pil_images, systems=None):
241
+ """play the role of format_messages_v2 and get_images_info in the last version"""
242
+ tokenized_data = []
243
+ masked_tokenized_data = [] # labels
244
+ images_list = []
245
+ images_seq_mask = []
246
+ images_spatial_crop = []
247
+ num_image_tokens = []
248
+
249
+ image_index = 0
250
+
251
+ conv = get_conv_template(self.sft_format)
252
+ conv_system_message = conv.system_message
253
+
254
+ for idx, message in enumerate(messages):
255
+ if idx == 0:
256
+ tokenized_data += [self.bos_id]
257
+ masked_tokenized_data += [self.bos_id]
258
+ images_seq_mask += [False]
259
+ conv.system_message = conv_system_message
260
+ else:
261
+ conv.system_message = ''
262
+
263
+ if message['role'] == conv.roles[0] or message['role'] == "user":
264
+ conv.reset_message()
265
+ conv.append_message(conv.roles[0], str(message['content']).strip())
266
+ conv.append_message(conv.roles[1], '')
267
+ formatted_question = conv.get_prompt()
268
+ tokenized_str, images, seq_mask, spatial_crop, n_image_tokens = self.tokenize_with_images(
269
+ formatted_question,
270
+ pil_images[image_index: image_index + formatted_question.count(self.image_token)],
271
+ bos=False,
272
+ eos=False,
273
+ cropping=len(pil_images) <= 2
274
+ )
275
+ image_index += formatted_question.count(self.image_token)
276
+
277
+ tokenized_data += tokenized_str
278
+ if self.mask_prompt:
279
+ masked_tokenized_data += [self.ignore_id] * len(tokenized_str)
280
+ else:
281
+ masked_tokenized_data += tokenized_str
282
+ images_list += images
283
+ images_seq_mask += seq_mask
284
+ images_spatial_crop += spatial_crop
285
+ num_image_tokens += n_image_tokens
286
+
287
+ elif message['role'] == conv.roles[1] or message['role'] == "assistant":
288
+ formatted_answer = message['content'].strip()
289
+ assert formatted_answer.count(
290
+ self.image_token) == 0, f"there should be no {self.image_token} in the assistant's reply, but got {messages}"
291
+ tokenized_str, images, seq_mask, spatial_crop, n_image_tokens = self.tokenize_with_images(
292
+ formatted_answer,
293
+ [],
294
+ bos=False,
295
+ eos=True,
296
+ cropping=len(pil_images) <= 2)
297
+
298
+ tokenized_data += tokenized_str
299
+ masked_tokenized_data += tokenized_str
300
+ images_seq_mask += seq_mask
301
+
302
+ elif message['role'] == 'system' or message['role'] == 'deepseekapi-sys':
303
+ # 如果message里面有system,那就只允许出现在message的第一句,同时conv原本的system就会失效
304
+ assert idx == 0, 'system information should only exist in the begining of the conversation'
305
+ formatted_system = message['content'].strip()
306
+ tokenized_str = self.encode(formatted_system, bos=False, eos=False)
307
+ tokenized_data += tokenized_str
308
+ if self.mask_prompt:
309
+ masked_tokenized_data += [self.ignore_id] * len(tokenized_str)
310
+ else:
311
+ masked_tokenized_data += tokenized_str
312
+ seq_mask = [False] * len(tokenized_str)
313
+ images_seq_mask += seq_mask
314
+
315
+ else:
316
+ assert False, f"Unknown role: {message['role']}"
317
+
318
+ assert len(tokenized_data) == len(
319
+ images_seq_mask), f"format_messages_v2: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
320
+ assert len(images_spatial_crop) == len(num_image_tokens), f"image number should be compatible"
321
+
322
+ return tokenized_data, masked_tokenized_data, images_list, images_seq_mask, images_spatial_crop, num_image_tokens
323
+
324
+ def format_prompts(
325
+ self,
326
+ prompts: str,
327
+ sft_format: str = "deepseek",
328
+ system_prompt: str = "",
329
+ ):
330
+ """
331
+ Applies the SFT template to prompts.
332
+
333
+ Args:
334
+ prompts (str): the non-sft formatted prompt;
335
+ sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
336
+ system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
337
+
338
+ Returns:
339
+ sft_prompt (str): The formatted text.
340
+ """
341
+
342
+ conv = get_conv_template(sft_format)
343
+ conv.set_system_message(system_prompt)
344
+ conv.append_message(conv.roles[0], prompts.strip())
345
+ conv.append_message(conv.roles[1], "")
346
+
347
+ sft_prompt = conv.get_prompt().strip()
348
+
349
+ return sft_prompt
350
+
351
+ @property
352
+ def bos_id(self):
353
+ return self.tokenizer.bos_token_id
354
+
355
+ @property
356
+ def eos_id(self):
357
+ return self.tokenizer.eos_token_id
358
+
359
+ @property
360
+ def pad_id(self):
361
+ return self.tokenizer.pad_token_id
362
+
363
+ def encode(self, text: str, bos: bool = True, eos: bool = False):
364
+ t = self.tokenizer.encode(text, add_special_tokens=False)
365
+
366
+ if bos:
367
+ t = [self.bos_id] + t
368
+ if eos:
369
+ t = t + [self.eos_id]
370
+
371
+ return t
372
+
373
+ def decode(self, t: List[int], **kwargs) -> str:
374
+ return self.tokenizer.decode(t, **kwargs)
375
+
376
+ def process_one(
377
+ self,
378
+ prompt: str = None,
379
+ conversations: List[Dict[str, str]] = None,
380
+ images: List[Image.Image] = None,
381
+ apply_sft_format: bool = False,
382
+ inference_mode: bool = True,
383
+ system_prompt: str = "",
384
+ **kwargs,
385
+ ):
386
+ """
387
+
388
+ Args:
389
+ prompt (str): the formatted prompt;
390
+ conversations (List[Dict]): conversations with a list of messages;
391
+ images (List[ImageType]): the list of images;
392
+ apply_sft_format (bool): if prompt is not None, then apply the SFT format to prompt;
393
+ if conversations is not None, then it will always apply the SFT format to conversations;
394
+ inference_mode (bool): if True, then remove the last eos token;
395
+ system_prompt (str): the system prompt;
396
+ **kwargs:
397
+
398
+ Returns:
399
+ outputs (BaseProcessorOutput): the output of the processor,
400
+ - input_ids (torch.LongTensor): [N + image tokens]
401
+ - target_ids (torch.LongTensor): [N + image tokens]
402
+ - images (torch.FloatTensor): [n_images, 3, H, W]
403
+ - image_id (int): the id of the image token
404
+ - num_image_tokens (List[int]): the number of image tokens
405
+ """
406
+
407
+ assert (
408
+ prompt is None or conversations is None
409
+ ), "prompt and conversations cannot be used at the same time."
410
+
411
+ if prompt is None:
412
+ # apply sft format
413
+ sft_format = self.format_messages(
414
+ conversations=conversations,
415
+ sft_format=self.sft_format,
416
+ system_prompt=system_prompt,
417
+ )
418
+ tokenized_str, masked_tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.format_messages_v2(
419
+ conversations, images)
420
+ else:
421
+ if apply_sft_format:
422
+ sft_format = self.format_prompts(
423
+ prompts=prompt,
424
+ sft_format=self.sft_format,
425
+ system_prompt=system_prompt
426
+ )
427
+ else:
428
+ sft_format = prompt
429
+ tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens = self.tokenize_with_images(
430
+ sft_format, images, bos=True, eos=True, cropping=len(images) <= 2)
431
+ masked_tokenized_str = []
432
+ for token_index in tokenized_str:
433
+ if token_index != self.image_token_id:
434
+ masked_tokenized_str.append(token_index)
435
+ else:
436
+ masked_tokenized_str.append(self.ignore_id)
437
+
438
+ assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \
439
+ (f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, "
440
+ f"imags_seq_mask's length {len(images_seq_mask)}, are not equal")
441
+
442
+ input_ids = torch.LongTensor(tokenized_str)
443
+ target_ids = torch.LongTensor(masked_tokenized_str)
444
+ images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
445
+
446
+ # set input_ids < 0 | input_ids == self.image_token_id as ignore_id
447
+ target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = self.ignore_id
448
+ input_ids[input_ids < 0] = self.pad_id
449
+
450
+ if inference_mode:
451
+ # 去掉结尾的eos token
452
+ assert input_ids[-1] == self.eos_id
453
+ input_ids = input_ids[:-1]
454
+ target_ids = target_ids[:-1]
455
+ images_seq_mask = images_seq_mask[:-1]
456
+
457
+ if len(images_list) == 0:
458
+ images = torch.zeros((1, 3, self.image_size, self.image_size))
459
+ images_spatial_crop = torch.zeros((1, 2), dtype=torch.long)
460
+ else:
461
+ images = torch.stack(images_list, dim=0)
462
+ images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
463
+
464
+ prepare = VLChatProcessorOutput(
465
+ sft_format=sft_format,
466
+ input_ids=input_ids,
467
+ target_ids=target_ids,
468
+ images=images,
469
+ images_seq_mask=images_seq_mask,
470
+ images_spatial_crop=images_spatial_crop,
471
+ num_image_tokens=num_image_tokens
472
+ )
473
+
474
+ return prepare
475
+
476
+ def __call__(
477
+ self,
478
+ *,
479
+ prompt: str = None,
480
+ conversations: List[Dict[str, str]] = None,
481
+ images: List[Image.Image] = None,
482
+ apply_sft_format: bool = False,
483
+ force_batchify: bool = True,
484
+ inference_mode: bool = True,
485
+ system_prompt: str = "",
486
+ **kwargs,
487
+ ):
488
+ """
489
+
490
+ Args:
491
+ prompt (str): the formatted prompt;
492
+ conversations (List[Dict]): conversations with a list of messages;
493
+ images (List[ImageType]): the list of images;
494
+ apply_sft_format (bool): if prompt is not None, then apply the SFT format to prompt;
495
+ if conversations is not None, then it will always apply the SFT format to conversations;
496
+ force_batchify (bool): force batchify the inputs;
497
+ inference_mode (bool): if True, then remove the last eos token;
498
+ system_prompt (str): the system prompt;
499
+ **kwargs:
500
+
501
+ Returns:
502
+ outputs (BaseProcessorOutput): the output of the processor,
503
+ - input_ids (torch.LongTensor): [N + image tokens]
504
+ - images (torch.FloatTensor): [n_images, 3, H, W]
505
+ - image_id (int): the id of the image token
506
+ - num_image_tokens (List[int]): the number of image tokens
507
+ """
508
+
509
+ prepare = self.process_one(
510
+ prompt=prompt,
511
+ conversations=conversations,
512
+ images=images,
513
+ apply_sft_format=apply_sft_format,
514
+ inference_mode=inference_mode,
515
+ system_prompt=system_prompt
516
+ )
517
+
518
+ if force_batchify:
519
+ prepare = self.batchify([prepare])
520
+
521
+ return prepare
522
+
523
+ def tokenize_with_images(
524
+ self,
525
+ conversation: str,
526
+ images: List[Image.Image],
527
+ bos: bool = True,
528
+ eos: bool = True,
529
+ cropping: bool = True,
530
+ ):
531
+ """Tokenize text with <image> tags."""
532
+ assert conversation.count(self.image_token) == len(images)
533
+ text_splits = conversation.split(self.image_token)
534
+ images_list, images_seq_mask, images_spatial_crop = [], [], []
535
+ num_image_tokens = []
536
+ tokenized_str = []
537
+ for text_sep, image in zip(text_splits, images):
538
+ """encode text_sep"""
539
+ tokenized_sep = self.encode(text_sep, bos=False, eos=False)
540
+ tokenized_str += tokenized_sep
541
+ images_seq_mask += [False] * len(tokenized_sep)
542
+
543
+ """select best resolution for anyres"""
544
+ if cropping:
545
+ best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions)
546
+ else:
547
+ best_width, best_height = self.image_size, self.image_size
548
+ # print(image.size, (best_width, best_height)) # check the select_best_resolutions func
549
+
550
+ """process the global view"""
551
+ global_view = ImageOps.pad(image, (self.image_size, self.image_size),
552
+ color=tuple(int(x * 255) for x in self.image_transform.mean))
553
+ images_list.append(self.image_transform(global_view))
554
+
555
+ """process the local views"""
556
+ local_view = ImageOps.pad(image, (best_width, best_height),
557
+ color=tuple(int(x * 255) for x in self.image_transform.mean))
558
+ for i in range(0, best_height, self.image_size):
559
+ for j in range(0, best_width, self.image_size):
560
+ images_list.append(
561
+ self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size))))
562
+
563
+ """record height / width crop num"""
564
+ num_width_tiles, num_height_tiles = best_width // self.image_size, best_height // self.image_size
565
+ images_spatial_crop.append([num_width_tiles, num_height_tiles])
566
+
567
+ """add image tokens"""
568
+ h = w = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio)
569
+ # global views tokens h * (w + 1), 1 is for line seperator
570
+ tokenized_image = [self.image_token_id] * h * (w + 1)
571
+ # add a seperator between global and local views
572
+ tokenized_image += [self.image_token_id]
573
+ # local views tokens, (num_height_tiles * h) * (num_width_tiles * w + 1)
574
+ tokenized_image += [self.image_token_id] * (num_height_tiles * h) * (num_width_tiles * w + 1)
575
+
576
+ tokenized_str += tokenized_image
577
+ images_seq_mask += [True] * len(tokenized_image)
578
+ num_image_tokens.append(len(tokenized_image))
579
+ # print(width_crop_num, height_crop_num, len(tokenized_image)) # test the correctness of the number of image-related tokens
580
+
581
+ """process the last text split"""
582
+ tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
583
+ tokenized_str += tokenized_sep
584
+ images_seq_mask += [False] * len(tokenized_sep)
585
+
586
+ """add the bos and eos tokens"""
587
+ if bos:
588
+ tokenized_str = [self.bos_id] + tokenized_str
589
+ images_seq_mask = [False] + images_seq_mask
590
+ if eos:
591
+ tokenized_str = tokenized_str + [self.eos_id]
592
+ images_seq_mask = images_seq_mask + [False]
593
+
594
+ assert len(tokenized_str) == len(
595
+ images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}"
596
+
597
+ return tokenized_str, images_list, images_seq_mask, images_spatial_crop, num_image_tokens
598
+
599
+ def batchify(
600
+ self,
601
+ sample_list: List[VLChatProcessorOutput],
602
+ padding: Literal["left", "right"] = "left"
603
+ ) -> BatchCollateOutput:
604
+ """
605
+ Preprocesses the inputs for multimodal inference.
606
+
607
+ Args:
608
+ sample_list (List[VLChatProcessorOutput]): A list of VLChatProcessorOutput.
609
+ padding (str): The padding method. Defaults to "left".
610
+
611
+ Returns:
612
+ BatchCollateOutput: A dictionary of the inputs to use for multimodal inference.
613
+ """
614
+
615
+ batched_sft_format = [sample.sft_format for sample in sample_list]
616
+ batched_input_ids = [sample.input_ids for sample in sample_list]
617
+ batched_labels = [sample.target_ids for sample in sample_list]
618
+ batched_images_seq_mask = [sample["images_seq_mask"] for sample in sample_list]
619
+ seq_lens = [len(sample) for sample in sample_list]
620
+
621
+ """padding input_ids and images_seq_mask"""
622
+ if padding == "left":
623
+ # the tokenizer is default to pad at left
624
+ ## TODO, You're using a LlamaTokenizerFast tokenizer.
625
+ # Please note that with a fast tokenizer, using the `__call__` method is faster than
626
+ # using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
627
+ padded_input_ids = self.tokenizer.pad({"input_ids": batched_input_ids})
628
+ batched_input_ids, batched_attention_mask = padded_input_ids["input_ids"], padded_input_ids[
629
+ "attention_mask"].bool()
630
+ batched_labels = self.tokenizer.pad({"input_ids": batched_labels})["input_ids"]
631
+ batched_labels[batched_labels == self.pad_id] = self.ignore_id # labels正常不会出现pad_id,无需额外保护
632
+ batched_images_seq_mask = self.tokenizer.pad({"input_ids": batched_images_seq_mask})["input_ids"]
633
+ batched_images_seq_mask[batched_images_seq_mask == self.pad_id] = False
634
+ else:
635
+ batched_input_ids = pad_sequence(batched_input_ids, batch_first=True, padding_value=self.pad_id)
636
+ batched_labels = pad_sequence(batched_labels, batch_first=True, padding_value=self.ignore_id)
637
+ batched_images_seq_mask = pad_sequence(batched_images_seq_mask, batch_first=True, padding_value=0)
638
+ batched_attention_mask = batched_input_ids != self.pad_id
639
+
640
+ """padding images to max_patch_num"""
641
+ max_n_patches = max(sample["images"].shape[0] for sample in sample_list)
642
+ batched_images = []
643
+ for sample in sample_list:
644
+ images = sample["images"]
645
+ n_pads = max_n_patches - images.shape[0]
646
+ if n_pads > 0:
647
+ pad_images = torch.zeros((n_pads, *images.shape[1:]), dtype=images.dtype)
648
+ images = torch.cat([images, pad_images], dim=0)
649
+ batched_images.append(images)
650
+ batched_images = torch.stack(batched_images, dim=0)
651
+
652
+ """padding images_spatial_crop to max_n_images"""
653
+ max_n_images = max(sample["images_spatial_crop"].shape[0] for sample in sample_list)
654
+ batched_images_spatial_crop = []
655
+ for sample in sample_list:
656
+ images_spatial_crop = sample["images_spatial_crop"]
657
+ n_pads = max_n_images - sample["images_spatial_crop"].shape[0]
658
+ if n_pads > 0:
659
+ pad_images_spatial_crop = torch.full((n_pads, 2), 0, dtype=images_spatial_crop.dtype)
660
+ images_spatial_crop = torch.cat([images_spatial_crop, pad_images_spatial_crop], dim=0)
661
+ batched_images_spatial_crop.append(images_spatial_crop)
662
+ batched_images_spatial_crop = torch.stack(batched_images_spatial_crop, dim=0)
663
+
664
+ batched_samples = BatchCollateOutput(
665
+ input_ids=batched_input_ids,
666
+ attention_mask=batched_attention_mask,
667
+ labels=batched_labels,
668
+ images=batched_images,
669
+ images_seq_mask=batched_images_seq_mask,
670
+ images_spatial_crop=batched_images_spatial_crop,
671
+ sft_format=batched_sft_format,
672
+ seq_lens=seq_lens
673
+ )
674
+
675
+ return batched_samples
deepseek_vl2/models/siglip_vit.py ADDED
@@ -0,0 +1,660 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py
2
+ from dataclasses import dataclass
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from typing import Final, Optional, Callable, Union, Tuple, List, Set, Dict, Type, Literal, Sequence
8
+ import math
9
+ import warnings
10
+ from timm.layers import (
11
+ PatchEmbed, Mlp, DropPath,
12
+ AttentionPoolLatent, PatchDropout, resample_abs_pos_embed, LayerType
13
+ )
14
+ from timm.models._manipulate import named_apply, checkpoint_seq, adapt_input_conv
15
+ from transformers.modeling_utils import is_flash_attn_2_available
16
+ from xformers.ops import memory_efficient_attention
17
+ from functools import partial
18
+
19
+
20
+ if is_flash_attn_2_available():
21
+ from flash_attn import flash_attn_qkvpacked_func
22
+
23
+
24
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
25
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
26
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
27
+ def norm_cdf(x):
28
+ # Computes standard normal cumulative distribution function
29
+ return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
30
+
31
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
32
+ warnings.warn(
33
+ "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
34
+ "The distribution of values may be incorrect.",
35
+ stacklevel=2,
36
+ )
37
+
38
+ with torch.no_grad():
39
+ # Values are generated by using a truncated uniform distribution and
40
+ # then using the inverse CDF for the normal distribution.
41
+ # Get upper and lower cdf values
42
+ l = norm_cdf((a - mean) / std) # noqa: E741
43
+ u = norm_cdf((b - mean) / std)
44
+
45
+ # Uniformly fill tensor with values from [l, u], then translate to
46
+ # [2l-1, 2u-1].
47
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
48
+
49
+ # Use inverse cdf transform for normal distribution to get truncated
50
+ # standard normal
51
+ tensor.erfinv_()
52
+
53
+ # Transform to proper mean, std
54
+ tensor.mul_(std * math.sqrt(2.0))
55
+ tensor.add_(mean)
56
+
57
+ # Clamp to ensure it's in the proper range
58
+ tensor.clamp_(min=a, max=b)
59
+ return tensor
60
+
61
+
62
+ def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
63
+ # type: (torch.Tensor, float, float, float, float) -> torch.Tensor
64
+ r"""The original timm.models.layers.weight_init.trunc_normal_ can not handle bfloat16 yet, here we first
65
+ convert the tensor to float32, apply the trunc_normal_() in float32, and then convert it back to its orignal dtype.
66
+ Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn
67
+ from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
68
+ with values outside :math:`[a, b]` redrawn until they are within
69
+ the bounds. The method used for generating the random values works
70
+ best when :math:`a \leq \text{mean} \leq b`.
71
+ Args:
72
+ tensor: an n-dimensional `torch.Tensor`
73
+ mean: the mean of the normal distribution
74
+ std: the standard deviation of the normal distribution
75
+ a: the minimum cutoff value
76
+ b: the maximum cutoff value
77
+ Examples:
78
+ >>> w = torch.empty(3, 5)
79
+ >>> nn.init.trunc_normal_(w)
80
+ """
81
+
82
+ with torch.no_grad():
83
+ dtype = tensor.dtype
84
+ tensor_fp32 = tensor.float()
85
+ tensor_fp32 = _no_grad_trunc_normal_(tensor_fp32, mean, std, a, b)
86
+ tensor_dtype = tensor_fp32.to(dtype=dtype)
87
+ tensor.copy_(tensor_dtype)
88
+
89
+
90
+ def init_weights(self):
91
+ if self.pos_embed is not None:
92
+ trunc_normal_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5)
93
+ trunc_normal_(self.latent, std=self.latent_dim ** -0.5)
94
+
95
+
96
+ def init_weights_vit_timm(module: nn.Module, name: str = '') -> None:
97
+ """ ViT weight initialization, original timm impl (for reproducibility) """
98
+ if isinstance(module, nn.Linear):
99
+ trunc_normal_(module.weight, std=.02)
100
+ if module.bias is not None:
101
+ nn.init.zeros_(module.bias)
102
+ elif hasattr(module, 'init_weights'):
103
+ module.init_weights()
104
+
105
+
106
+ class Attention(nn.Module):
107
+ fused_attn: Final[bool]
108
+
109
+ def __init__(
110
+ self,
111
+ dim: int,
112
+ num_heads: int = 8,
113
+ qkv_bias: bool = False,
114
+ qk_norm: bool = False,
115
+ attn_drop: float = 0.,
116
+ proj_drop: float = 0.,
117
+ norm_layer: nn.Module = nn.LayerNorm,
118
+ deterministic: bool = False,
119
+ ) -> None:
120
+ super().__init__()
121
+ assert dim % num_heads == 0, 'dim should be divisible by num_heads'
122
+ self.num_heads = num_heads
123
+ self.head_dim = dim // num_heads
124
+ self.scale = self.head_dim ** -0.5
125
+ self.qk_norm = qk_norm
126
+ self.fused_attn = True
127
+ self.deterministic = deterministic
128
+
129
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
130
+ self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
131
+ self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
132
+ self.attn_drop = nn.Dropout(attn_drop)
133
+ self.proj = nn.Linear(dim, dim)
134
+ self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0. else nn.Identity()
135
+
136
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
137
+ B, N, C = x.shape
138
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim)
139
+
140
+ if not self.qk_norm:
141
+ if self.head_dim % 32 == 0 and is_flash_attn_2_available():
142
+ # flashattn must have head_dim as a multiple of 32
143
+ x = flash_attn_qkvpacked_func(qkv, dropout_p=self.attn_drop.p if self.training else 0.,
144
+ deterministic=self.deterministic)
145
+ else:
146
+ q, k, v = qkv.unbind(2)
147
+ x = memory_efficient_attention(q, k, v, p=self.attn_drop.p if self.training else 0.)
148
+ x = x.reshape(B, N, C)
149
+ x = self.proj(x)
150
+ x = self.proj_drop(x)
151
+ return x
152
+
153
+ qkv = qkv.permute(2, 0, 3, 1, 4)
154
+ q, k, v = qkv.unbind(0)
155
+ q, k = self.q_norm(q), self.k_norm(k)
156
+
157
+ if self.fused_attn:
158
+ with torch.backends.cuda.sdp_kernel(enable_math=False, enable_mem_efficient=False):
159
+ # 用上下文的方式强行使用fa
160
+ x = F.scaled_dot_product_attention(
161
+ q, k, v,
162
+ dropout_p=self.attn_drop.p if self.training else 0.,
163
+ )
164
+ else:
165
+ q = q * self.scale
166
+ attn = q @ k.transpose(-2, -1)
167
+ attn = attn.softmax(dim=-1)
168
+ attn = self.attn_drop(attn)
169
+ x = attn @ v
170
+
171
+ x = x.transpose(1, 2).reshape(B, N, C)
172
+ x = self.proj(x)
173
+ x = self.proj_drop(x)
174
+ return x
175
+
176
+
177
+ class LayerScale(nn.Module):
178
+ def __init__(
179
+ self,
180
+ dim: int,
181
+ init_values: float = 1e-5,
182
+ inplace: bool = False,
183
+ ) -> None:
184
+ super().__init__()
185
+ self.inplace = inplace
186
+ self.gamma = nn.Parameter(init_values * torch.ones(dim))
187
+
188
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
189
+ return x.mul_(self.gamma) if self.inplace else x * self.gamma
190
+
191
+
192
+ class Block(nn.Module):
193
+ def __init__(
194
+ self,
195
+ dim: int,
196
+ num_heads: int,
197
+ mlp_ratio: float = 4.,
198
+ qkv_bias: bool = False,
199
+ qk_norm: bool = False,
200
+ proj_drop: float = 0.,
201
+ attn_drop: float = 0.,
202
+ init_values: Optional[float] = None,
203
+ drop_path: float = 0.,
204
+ act_layer: nn.Module = nn.GELU,
205
+ norm_layer: nn.Module = nn.LayerNorm,
206
+ mlp_layer: nn.Module = Mlp,
207
+ deterministic: bool = False,
208
+ ) -> None:
209
+ super().__init__()
210
+ self.norm1 = norm_layer(dim)
211
+ self.attn = Attention(
212
+ dim,
213
+ num_heads=num_heads,
214
+ qkv_bias=qkv_bias,
215
+ qk_norm=qk_norm,
216
+ attn_drop=attn_drop,
217
+ proj_drop=proj_drop,
218
+ norm_layer=norm_layer,
219
+ deterministic=deterministic,
220
+ )
221
+ self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
222
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
223
+
224
+ self.norm2 = norm_layer(dim)
225
+ self.mlp = mlp_layer(
226
+ in_features=dim,
227
+ hidden_features=int(dim * mlp_ratio),
228
+ act_layer=act_layer,
229
+ drop=proj_drop,
230
+ )
231
+ self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
232
+ self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
233
+
234
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
235
+ x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
236
+ x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
237
+ return x
238
+
239
+
240
+ class VisionTransformer(nn.Module):
241
+ """ Vision Transformer
242
+
243
+ A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
244
+ - https://arxiv.org/abs/2010.11929
245
+ """
246
+ dynamic_img_size: Final[bool]
247
+
248
+ def __init__(
249
+ self,
250
+ img_size: Union[int, Tuple[int, int]] = 224,
251
+ patch_size: Union[int, Tuple[int, int]] = 16,
252
+ in_chans: int = 3,
253
+ num_classes: int = 1000,
254
+ global_pool: Literal['', 'avg', 'token', 'map'] = 'token',
255
+ embed_dim: int = 768,
256
+ depth: int = 12,
257
+ num_heads: int = 12,
258
+ mlp_ratio: float = 4.,
259
+ qkv_bias: bool = True,
260
+ qk_norm: bool = False,
261
+ init_values: Optional[float] = None,
262
+ class_token: bool = True,
263
+ no_embed_class: bool = False,
264
+ reg_tokens: int = 0,
265
+ pre_norm: bool = False,
266
+ fc_norm: Optional[bool] = None,
267
+ dynamic_img_size: bool = False,
268
+ dynamic_img_pad: bool = False,
269
+ drop_rate: float = 0.,
270
+ pos_drop_rate: float = 0.,
271
+ patch_drop_rate: float = 0.,
272
+ proj_drop_rate: float = 0.,
273
+ attn_drop_rate: float = 0.,
274
+ drop_path_rate: float = 0.,
275
+ weight_init: Literal['skip', 'jax', 'jax_nlhb', 'moco', ''] = '',
276
+ embed_layer: Callable = PatchEmbed,
277
+ norm_layer: Optional[LayerType] = None,
278
+ act_layer: Optional[LayerType] = None,
279
+ block_fn: Type[nn.Module] = Block,
280
+ mlp_layer: Type[nn.Module] = Mlp,
281
+ ignore_head: bool = False,
282
+ deterministic: bool = False,
283
+ num_recomputing_layers: int = 0
284
+ ) -> None:
285
+ """
286
+ Args:
287
+ img_size: Input image size.
288
+ patch_size: Patch size.
289
+ in_chans: Number of image input channels.
290
+ num_classes: Mumber of classes for classification head.
291
+ global_pool: Type of global pooling for final sequence (default: 'token').
292
+ embed_dim: Transformer embedding dimension.
293
+ depth: Depth of transformer.
294
+ num_heads: Number of attention heads.
295
+ mlp_ratio: Ratio of mlp hidden dim to embedding dim.
296
+ qkv_bias: Enable bias for qkv projections if True.
297
+ init_values: Layer-scale init values (layer-scale enabled if not None).
298
+ class_token: Use class token.
299
+ no_embed_class: Don't include position embeddings for class (or reg) tokens.
300
+ reg_tokens: Number of register tokens.
301
+ fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'.
302
+ drop_rate: Head dropout rate.
303
+ pos_drop_rate: Position embedding dropout rate.
304
+ attn_drop_rate: Attention dropout rate.
305
+ drop_path_rate: Stochastic depth rate.
306
+ weight_init: Weight initialization scheme.
307
+ embed_layer: Patch embedding layer.
308
+ norm_layer: Normalization layer.
309
+ act_layer: MLP activation layer.
310
+ block_fn: Transformer block layer.
311
+ """
312
+ super().__init__()
313
+ assert global_pool in ('', 'avg', 'token', 'map')
314
+ assert class_token or global_pool != 'token'
315
+ use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm
316
+ # norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-6)
317
+ # act_layer = get_act_layer(act_layer) or nn.GELU
318
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
319
+ # siglip use PytorchGELUTanh() rather than the vanilla nn.GELU()
320
+ # https://github.com/huggingface/transformers/blob/78b2929c0554b79e0489b451ce4ece14d265ead2/src/transformers/models/siglip/configuration_siglip.py#L191
321
+ act_layer = partial(nn.GELU, approximate='tanh')
322
+
323
+ self.num_classes = num_classes
324
+ self.global_pool = global_pool
325
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
326
+ self.num_prefix_tokens = 1 if class_token else 0
327
+ self.num_prefix_tokens += reg_tokens
328
+ self.num_reg_tokens = reg_tokens
329
+ self.has_class_token = class_token
330
+ self.no_embed_class = no_embed_class # don't embed prefix positions (includes reg)
331
+ self.dynamic_img_size = dynamic_img_size
332
+ self.grad_checkpointing = False
333
+ self.ignore_head = ignore_head
334
+ self.num_recomputing_layers = num_recomputing_layers
335
+
336
+ embed_args = {}
337
+ if dynamic_img_size:
338
+ # flatten deferred until after pos embed
339
+ embed_args.update(dict(strict_img_size=False, output_fmt='NHWC'))
340
+ self.patch_embed = embed_layer(
341
+ img_size=img_size,
342
+ patch_size=patch_size,
343
+ in_chans=in_chans,
344
+ embed_dim=embed_dim,
345
+ bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP)
346
+ dynamic_img_pad=dynamic_img_pad,
347
+ **embed_args,
348
+ )
349
+ num_patches = self.patch_embed.num_patches
350
+
351
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
352
+ self.reg_token = nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None
353
+ embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
354
+ self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02)
355
+ self.pos_drop = nn.Dropout(p=pos_drop_rate)
356
+ if patch_drop_rate > 0:
357
+ self.patch_drop = PatchDropout(
358
+ patch_drop_rate,
359
+ num_prefix_tokens=self.num_prefix_tokens,
360
+ )
361
+ else:
362
+ self.patch_drop = nn.Identity()
363
+ self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity()
364
+
365
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
366
+ self.blocks = nn.Sequential(*[
367
+ block_fn(
368
+ dim=embed_dim,
369
+ num_heads=num_heads,
370
+ mlp_ratio=mlp_ratio,
371
+ qkv_bias=qkv_bias,
372
+ qk_norm=qk_norm,
373
+ init_values=init_values,
374
+ proj_drop=proj_drop_rate,
375
+ attn_drop=attn_drop_rate,
376
+ drop_path=dpr[i],
377
+ norm_layer=norm_layer,
378
+ act_layer=act_layer,
379
+ mlp_layer=mlp_layer,
380
+ deterministic=deterministic,
381
+ )
382
+ for i in range(depth)])
383
+ self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()
384
+
385
+ # Classifier Head
386
+ if global_pool == 'map':
387
+ AttentionPoolLatent.init_weights = init_weights
388
+ self.attn_pool = AttentionPoolLatent(
389
+ self.embed_dim,
390
+ num_heads=num_heads,
391
+ mlp_ratio=mlp_ratio,
392
+ norm_layer=norm_layer,
393
+ )
394
+ else:
395
+ self.attn_pool = None
396
+ self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
397
+ self.head_drop = nn.Dropout(drop_rate)
398
+ self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
399
+
400
+ if weight_init != 'skip':
401
+ self.init_weights(weight_init)
402
+
403
+ def init_weights(self, mode: Literal['jax', 'jax_nlhb', 'moco', ''] = '') -> None:
404
+ assert mode in ('jax', 'jax_nlhb', 'moco', '')
405
+ head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
406
+ trunc_normal_(self.pos_embed, std=.02)
407
+ if self.cls_token is not None:
408
+ nn.init.normal_(self.cls_token, std=1e-6)
409
+ named_apply(init_weights_vit_timm, self)
410
+
411
+ @torch.jit.ignore
412
+ def no_weight_decay(self) -> Set:
413
+ return {'pos_embed', 'cls_token', 'dist_token'}
414
+
415
+ @torch.jit.ignore
416
+ def group_matcher(self, coarse: bool = False) -> Dict:
417
+ return dict(
418
+ stem=r'^cls_token|pos_embed|patch_embed', # stem and embed
419
+ blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))]
420
+ )
421
+
422
+ @torch.jit.ignore
423
+ def set_grad_checkpointing(self, enable: bool = True) -> None:
424
+ self.grad_checkpointing = enable
425
+
426
+ @torch.jit.ignore
427
+ def get_classifier(self) -> nn.Module:
428
+ return self.head
429
+
430
+ def reset_classifier(self, num_classes: int, global_pool=None) -> None:
431
+ self.num_classes = num_classes
432
+ if global_pool is not None:
433
+ assert global_pool in ('', 'avg', 'token', 'map')
434
+ if global_pool == 'map' and self.attn_pool is None:
435
+ assert False, "Cannot currently add attention pooling in reset_classifier()."
436
+ elif global_pool != 'map ' and self.attn_pool is not None:
437
+ self.attn_pool = None # remove attention pooling
438
+ self.global_pool = global_pool
439
+ self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
440
+
441
+ def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
442
+ if self.dynamic_img_size:
443
+ B, H, W, C = x.shape
444
+ pos_embed = resample_abs_pos_embed(
445
+ self.pos_embed,
446
+ (H, W),
447
+ num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
448
+ )
449
+ x = x.view(B, -1, C)
450
+ else:
451
+ pos_embed = self.pos_embed
452
+
453
+ to_cat = []
454
+ if self.cls_token is not None:
455
+ to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
456
+ if self.reg_token is not None:
457
+ to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))
458
+
459
+ if self.no_embed_class:
460
+ # deit-3, updated JAX (big vision)
461
+ # position embedding does not overlap with class token, add then concat
462
+ x = x + pos_embed
463
+ if to_cat:
464
+ x = torch.cat(to_cat + [x], dim=1)
465
+ else:
466
+ # original timm, JAX, and deit vit impl
467
+ # pos_embed has entry for class token, concat then add
468
+ if to_cat:
469
+ x = torch.cat(to_cat + [x], dim=1)
470
+ x = x + pos_embed
471
+
472
+ return self.pos_drop(x)
473
+
474
+ def _intermediate_layers(
475
+ self,
476
+ x: torch.Tensor,
477
+ n: Union[int, Sequence] = 1,
478
+ ) -> List[torch.Tensor]:
479
+ outputs, num_blocks = [], len(self.blocks)
480
+ take_indices = set(range(num_blocks - n, num_blocks) if isinstance(n, int) else n)
481
+
482
+ # forward pass
483
+ x = self.patch_embed(x)
484
+ x = self._pos_embed(x)
485
+ x = self.patch_drop(x)
486
+ x = self.norm_pre(x)
487
+ for i, blk in enumerate(self.blocks):
488
+ x = blk(x)
489
+ if i in take_indices:
490
+ outputs.append(x)
491
+
492
+ return outputs
493
+
494
+ def get_intermediate_layers(
495
+ self,
496
+ x: torch.Tensor,
497
+ n: Union[int, Sequence] = 1,
498
+ reshape: bool = False,
499
+ return_prefix_tokens: bool = False,
500
+ norm: bool = False,
501
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
502
+ """ Intermediate layer accessor (NOTE: This is a WIP experiment).
503
+ Inspired by DINO / DINOv2 interface
504
+ """
505
+ # take last n blocks if n is an int, if in is a sequence, select by matching indices
506
+ outputs = self._intermediate_layers(x, n)
507
+ if norm:
508
+ outputs = [self.norm(out) for out in outputs]
509
+ prefix_tokens = [out[:, 0:self.num_prefix_tokens] for out in outputs]
510
+ outputs = [out[:, self.num_prefix_tokens:] for out in outputs]
511
+
512
+ if reshape:
513
+ grid_size = self.patch_embed.grid_size
514
+ outputs = [
515
+ out.reshape(x.shape[0], grid_size[0], grid_size[1], -1).permute(0, 3, 1, 2).contiguous()
516
+ for out in outputs
517
+ ]
518
+
519
+ if return_prefix_tokens:
520
+ return tuple(zip(outputs, prefix_tokens))
521
+ return tuple(outputs)
522
+
523
+ def forward_features(self, x: torch.Tensor) -> torch.Tensor:
524
+ if getattr(self, "is_first_stage", True):
525
+ x = self.patch_embed(x)
526
+ x = self._pos_embed(x)
527
+ x = self.patch_drop(x)
528
+ x = self.norm_pre(x)
529
+ if self.grad_checkpointing and not torch.jit.is_scripting():
530
+ skip_last = max(1, len(self.blocks) - self.num_recomputing_layers)
531
+ x = checkpoint_seq(self.blocks, x, skip_last=skip_last)
532
+ else:
533
+ x = self.blocks(x)
534
+ if getattr(self, "is_last_stage", True):
535
+ x = self.norm(x)
536
+ return x
537
+
538
+ def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor:
539
+ if not getattr(self, "is_last_stage", True):
540
+ return x
541
+ if self.attn_pool is not None:
542
+ x = self.attn_pool(x)
543
+ elif self.global_pool == 'avg':
544
+ x = x[:, self.num_prefix_tokens:].mean(dim=1)
545
+ elif self.global_pool:
546
+ x = x[:, 0] # class token
547
+ x = self.fc_norm(x)
548
+ x = self.head_drop(x)
549
+ return x if pre_logits else self.head(x)
550
+
551
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
552
+ x = self.forward_features(x)
553
+ if not self.ignore_head:
554
+ x = self.forward_head(x)
555
+ return x
556
+
557
+ def to_pipeline(self, pp_size, pp_rank, pp_splits: Optional[List[int]] = None):
558
+ self.is_first_stage = pp_rank == 0
559
+ self.is_last_stage = pp_rank == pp_size - 1
560
+ if not self.is_first_stage and hasattr(self, "patch_embed"):
561
+ del self.patch_embed, self.cls_token, self.reg_token, self.pos_embed, self.pos_drop, self.patch_drop, self.norm_pre
562
+ if not self.is_last_stage and hasattr(self, "norm"):
563
+ del self.norm, self.attn_pool, self.fc_norm, self.head_drop, self.head
564
+ if pp_splits is not None:
565
+ assert len(self.blocks) == sum(pp_splits)
566
+ splits = np.cumsum([0] + pp_splits)
567
+ self.blocks = self.blocks[splits[pp_rank]:splits[pp_rank + 1]]
568
+ return self
569
+
570
+
571
+ @dataclass
572
+ class SigLIPVisionCfg:
573
+ width: int = 1152
574
+ layers: Union[Tuple[int, int, int, int], int] = 27
575
+ heads: int = 16
576
+ patch_size: int = 14
577
+ image_size: Union[Tuple[int, int], int] = 336
578
+ global_pool: str = "map"
579
+ mlp_ratio: float = 3.7362
580
+ class_token: bool = False
581
+ num_classes: int = 0
582
+ use_checkpoint: bool = False
583
+
584
+
585
+ SigLIP_MODEL_CONFIG = {
586
+ "siglip_so400m_patch14_384": {
587
+ "image_size": 384,
588
+ "patch_size": 14,
589
+ "width": 1152,
590
+ "layers": 27,
591
+ "heads": 16,
592
+ "mlp_ratio": 3.7362,
593
+ "global_pool": "map",
594
+ "use_checkpoint": False
595
+ },
596
+
597
+ "siglip_so400m_patch14_224": {
598
+ "image_size": 224,
599
+ "patch_size": 14,
600
+ "width": 1152,
601
+ "layers": 27,
602
+ "heads": 16,
603
+ "mlp_ratio": 3.7362,
604
+ "global_pool": "map",
605
+ "use_checkpoint": False
606
+ },
607
+
608
+ "siglip_large_patch16_384": {
609
+ "image_size": 384,
610
+ "patch_size": 16,
611
+ "width": 1024,
612
+ "layers": 24,
613
+ "heads": 16,
614
+ "mlp_ratio": 4,
615
+ "global_pool": "map",
616
+ "use_checkpoint": False
617
+ }
618
+ }
619
+
620
+
621
+ def create_siglip_vit(
622
+ model_name: str = "siglip_so400m_patch14_384",
623
+ image_size: int = 384,
624
+ select_layer: int = -1,
625
+ ckpt_path: str = "",
626
+ **kwargs
627
+ ):
628
+ assert model_name in SigLIP_MODEL_CONFIG.keys(), f"model name should be in {SigLIP_MODEL_CONFIG.keys()}"
629
+
630
+ vision_cfg = SigLIPVisionCfg(**SigLIP_MODEL_CONFIG[model_name])
631
+
632
+ if select_layer <= 0:
633
+ layers = min(vision_cfg.layers, vision_cfg.layers + select_layer + 1)
634
+ else:
635
+ layers = min(vision_cfg.layers, select_layer)
636
+
637
+ model = VisionTransformer(
638
+ img_size=image_size,
639
+ patch_size=vision_cfg.patch_size,
640
+ embed_dim=vision_cfg.width,
641
+ depth=layers,
642
+ num_heads=vision_cfg.heads,
643
+ mlp_ratio=vision_cfg.mlp_ratio,
644
+ class_token=vision_cfg.class_token,
645
+ global_pool=vision_cfg.global_pool,
646
+ ignore_head=kwargs.get("ignore_head", True),
647
+ weight_init=kwargs.get("weight_init", "skip"),
648
+ num_classes=0,
649
+ deterministic=kwargs.get("deterministic", False),
650
+ num_recomputing_layers=kwargs.get("num_recomputing_layers", 0)
651
+ )
652
+
653
+ if ckpt_path:
654
+ state_dict = torch.load(ckpt_path, map_location="cpu")
655
+
656
+ incompatible_keys = model.load_state_dict(state_dict, strict=False)
657
+ print(f"SigLIP-ViT restores from {ckpt_path},\n"
658
+ f"\tincompatible_keys:', {incompatible_keys}.")
659
+
660
+ return model
deepseek_vl2/serve/__init__.py ADDED
File without changes
deepseek_vl2/serve/app_modules/__init__.py ADDED
File without changes
deepseek_vl2/serve/app_modules/gradio_utils.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from functools import wraps
21
+
22
+ import gradio as gr
23
+
24
+
25
+ def wrap_gen_fn(gen_fn):
26
+ @wraps(gen_fn)
27
+ def wrapped_gen_fn(prompt, *args, **kwargs):
28
+ try:
29
+ yield from gen_fn(prompt, *args, **kwargs)
30
+ except gr.Error as g_err:
31
+ raise g_err
32
+ except Exception as e:
33
+ raise gr.Error(f"Failed to generate text: {e}") from e
34
+
35
+ return wrapped_gen_fn
36
+
37
+
38
+ def delete_last_conversation(chatbot, history):
39
+ if len(history) % 2 != 0:
40
+ gr.Error("history length is not even")
41
+ return (
42
+ chatbot,
43
+ history,
44
+ "Delete Done",
45
+ )
46
+
47
+ if len(chatbot) > 0:
48
+ chatbot.pop()
49
+
50
+ if len(history) > 0 and len(history) % 2 == 0:
51
+ history.pop()
52
+ history.pop()
53
+
54
+ return (
55
+ chatbot,
56
+ history,
57
+ "Delete Done",
58
+ )
59
+
60
+
61
+ def reset_state():
62
+ return [], [], None, "Reset Done"
63
+
64
+
65
+ def reset_textbox():
66
+ return gr.update(value=""), ""
67
+
68
+
69
+ def cancel_outputing():
70
+ return "Stop Done"
71
+
72
+
73
+ class State:
74
+ interrupted = False
75
+
76
+ def interrupt(self):
77
+ self.interrupted = True
78
+
79
+ def recover(self):
80
+ self.interrupted = False
81
+
82
+
83
+ shared_state = State()
deepseek_vl2/serve/app_modules/overwrites.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from __future__ import annotations
21
+
22
+ import logging
23
+ from typing import List, Tuple
24
+
25
+ from deepseek_vl2.serve.app_modules.presets import gr
26
+ from deepseek_vl2.serve.app_modules.utils import convert_asis, convert_mdtext, detect_converted_mark
27
+
28
+
29
+ def compact_text_chunks(self, prompt, text_chunks: List[str]) -> List[str]:
30
+ logging.debug("Compacting text chunks...🚀🚀🚀")
31
+ combined_str = [c.strip() for c in text_chunks if c.strip()]
32
+ combined_str = [f"[{index+1}] {c}" for index, c in enumerate(combined_str)]
33
+ combined_str = "\n\n".join(combined_str)
34
+ # resplit based on self.max_chunk_overlap
35
+ text_splitter = self.get_text_splitter_given_prompt(prompt, 1, padding=1)
36
+ return text_splitter.split_text(combined_str)
37
+
38
+
39
+ def postprocess(
40
+ self, y: List[Tuple[str | None, str | None]]
41
+ ) -> List[Tuple[str | None, str | None]]:
42
+ """
43
+ Parameters:
44
+ y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
45
+ Returns:
46
+ List of tuples representing the message and response. Each message and response will be a string of HTML.
47
+ """
48
+ if y is None or y == []:
49
+ return []
50
+ temp = []
51
+ for x in y:
52
+ user, bot = x
53
+ if not detect_converted_mark(user):
54
+ user = convert_asis(user)
55
+ if not detect_converted_mark(bot):
56
+ bot = convert_mdtext(bot)
57
+ temp.append((user, bot))
58
+ return temp
59
+
60
+
61
+ with open("deepseek_vl2/serve/assets/custom.js", "r", encoding="utf-8") as f, open(
62
+ "deepseek_vl2/serve/assets/Kelpy-Codos.js", "r", encoding="utf-8"
63
+ ) as f2:
64
+ customJS = f.read()
65
+ kelpyCodos = f2.read()
66
+
67
+
68
+ def reload_javascript():
69
+ print("Reloading javascript...")
70
+ js = f"<script>{customJS}</script><script>{kelpyCodos}</script>"
71
+
72
+ def template_response(*args, **kwargs):
73
+ res = GradioTemplateResponseOriginal(*args, **kwargs)
74
+ res.body = res.body.replace(b"</html>", f"{js}</html>".encode("utf8"))
75
+ res.init_headers()
76
+ return res
77
+
78
+ gr.routes.templates.TemplateResponse = template_response
79
+
80
+
81
+ GradioTemplateResponseOriginal = gr.routes.templates.TemplateResponse
deepseek_vl2/serve/app_modules/presets.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ # -*- coding:utf-8 -*-
21
+ import gradio as gr
22
+
23
+ title = """<h1 align="left" style="min-width:200px; margin-top:0;">Chat with DeepSeek-VL2 </h1>"""
24
+ description_top = """Special Tokens: `<image>`, Visual Grounding: `<|ref|>{query}<|/ref|>`, Grounding Conversation: `<|grounding|>{question}`"""
25
+ description = """"""
26
+ CONCURRENT_COUNT = 1
27
+ MAX_EVENTS = 10
28
+ MAX_IMAGE_SIZE = 800
29
+ MIN_IMAGE_SIZE = 400
30
+
31
+ BOX2COLOR = {
32
+ 0: (255, 0, 0),
33
+ 1: (0, 255, 0),
34
+ 2: (0, 0, 255),
35
+ 3: (0, 255, 255),
36
+ 4: (255, 255, 0),
37
+ 5: (255, 0, 255),
38
+ 6: (127, 127, 127),
39
+ 7: (255, 255, 127),
40
+ 8: (255, 127, 255),
41
+ 9: (127, 255, 255),
42
+ 10: (127, 127, 255),
43
+ 11: (127, 255, 127),
44
+ 12: (255, 127, 127),
45
+ }
46
+
47
+
48
+ ALREADY_CONVERTED_MARK = "<!-- ALREADY CONVERTED BY PARSER. -->"
49
+
50
+ small_and_beautiful_theme = gr.themes.Soft(
51
+ primary_hue=gr.themes.Color(
52
+ c50="#EBFAF2",
53
+ c100="#CFF3E1",
54
+ c200="#A8EAC8",
55
+ c300="#77DEA9",
56
+ c400="#3FD086",
57
+ c500="#02C160",
58
+ c600="#06AE56",
59
+ c700="#05974E",
60
+ c800="#057F45",
61
+ c900="#04673D",
62
+ c950="#2E5541",
63
+ name="small_and_beautiful",
64
+ ),
65
+ secondary_hue=gr.themes.Color(
66
+ c50="#576b95",
67
+ c100="#576b95",
68
+ c200="#576b95",
69
+ c300="#576b95",
70
+ c400="#576b95",
71
+ c500="#576b95",
72
+ c600="#576b95",
73
+ c700="#576b95",
74
+ c800="#576b95",
75
+ c900="#576b95",
76
+ c950="#576b95",
77
+ ),
78
+ neutral_hue=gr.themes.Color(
79
+ name="gray",
80
+ c50="#f6f7f8",
81
+ # c100="#f3f4f6",
82
+ c100="#F2F2F2",
83
+ c200="#e5e7eb",
84
+ c300="#d1d5db",
85
+ c400="#B2B2B2",
86
+ c500="#808080",
87
+ c600="#636363",
88
+ c700="#515151",
89
+ c800="#393939",
90
+ # c900="#272727",
91
+ c900="#2B2B2B",
92
+ c950="#171717",
93
+ ),
94
+ radius_size=gr.themes.sizes.radius_sm,
95
+ ).set(
96
+ # button_primary_background_fill="*primary_500",
97
+ button_primary_background_fill_dark="*primary_600",
98
+ # button_primary_background_fill_hover="*primary_400",
99
+ # button_primary_border_color="*primary_500",
100
+ button_primary_border_color_dark="*primary_600",
101
+ button_primary_text_color="white",
102
+ button_primary_text_color_dark="white",
103
+ button_secondary_background_fill="*neutral_100",
104
+ button_secondary_background_fill_hover="*neutral_50",
105
+ button_secondary_background_fill_dark="*neutral_900",
106
+ button_secondary_text_color="*neutral_800",
107
+ button_secondary_text_color_dark="white",
108
+ # background_fill_primary="#F7F7F7",
109
+ # background_fill_primary_dark="#1F1F1F",
110
+ # block_title_text_color="*primary_500",
111
+ block_title_background_fill_dark="*primary_900",
112
+ block_label_background_fill_dark="*primary_900",
113
+ input_background_fill="#F6F6F6",
114
+ # chatbot_code_background_color_dark="*neutral_950",
115
+ )
deepseek_vl2/serve/app_modules/utils.py ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ # -*- coding:utf-8 -*-
21
+ from __future__ import annotations
22
+
23
+ import html
24
+ import logging
25
+ import io
26
+ import os
27
+ import re
28
+ import base64
29
+ import time
30
+ from PIL import Image, ImageDraw, ImageFont
31
+
32
+ import mdtex2html
33
+ from markdown import markdown
34
+ from pygments import highlight
35
+ from pygments.formatters import HtmlFormatter
36
+ from pygments.lexers import ClassNotFound, get_lexer_by_name, guess_lexer
37
+
38
+ from deepseek_vl2.serve.app_modules.presets import (
39
+ ALREADY_CONVERTED_MARK,
40
+ BOX2COLOR,
41
+ MAX_IMAGE_SIZE,
42
+ MIN_IMAGE_SIZE
43
+ )
44
+
45
+ logger = logging.getLogger("gradio_logger")
46
+
47
+
48
+ def configure_logger():
49
+ logger = logging.getLogger("gradio_logger")
50
+ logger.setLevel(logging.DEBUG)
51
+
52
+ timestr = time.strftime("%Y%m%d-%H%M%S")
53
+ os.makedirs("deepseek_vl2/serve/logs", exist_ok=True)
54
+ file_handler = logging.FileHandler(
55
+ f"deepseek_vl2/serve/logs/{timestr}_gradio_log.log"
56
+ )
57
+ console_handler = logging.StreamHandler()
58
+
59
+ formatter = logging.Formatter(
60
+ "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
61
+ )
62
+ console_handler.setFormatter(formatter)
63
+ file_handler.setFormatter(formatter)
64
+
65
+ console_handler.setLevel(logging.INFO)
66
+ file_handler.setLevel(logging.INFO)
67
+
68
+ logger.addHandler(console_handler)
69
+ logger.addHandler(file_handler)
70
+
71
+ return logger
72
+
73
+
74
+ def strip_stop_words(x, stop_words):
75
+ for w in stop_words:
76
+ if w in x:
77
+ return x[: x.index(w)].strip()
78
+ return x.strip()
79
+
80
+
81
+ def format_output(history, text, x):
82
+ updated_history = history + [[text, x]]
83
+ a = [[y[0], convert_to_markdown(y[1])] for y in updated_history]
84
+ return a, updated_history
85
+
86
+
87
+ def markdown_to_html_with_syntax_highlight(md_str): # deprecated
88
+ def replacer(match):
89
+ lang = match.group(1) or "text"
90
+ code = match.group(2)
91
+
92
+ try:
93
+ lexer = get_lexer_by_name(lang, stripall=True)
94
+ except ValueError:
95
+ lexer = get_lexer_by_name("text", stripall=True)
96
+
97
+ formatter = HtmlFormatter()
98
+ highlighted_code = highlight(code, lexer, formatter)
99
+
100
+ return f'<pre><code class="{lang}">{highlighted_code}</code></pre>'
101
+
102
+ code_block_pattern = r"```(\w+)?\n([\s\S]+?)\n```"
103
+ md_str = re.sub(code_block_pattern, replacer, md_str, flags=re.MULTILINE)
104
+
105
+ html_str = markdown(md_str)
106
+ return html_str
107
+
108
+
109
+ def normalize_markdown(md_text: str) -> str: # deprecated
110
+ lines = md_text.split("\n")
111
+ normalized_lines = []
112
+ inside_list = False
113
+
114
+ for i, line in enumerate(lines):
115
+ if re.match(r"^(\d+\.|-|\*|\+)\s", line.strip()):
116
+ if not inside_list and i > 0 and lines[i - 1].strip() != "":
117
+ normalized_lines.append("")
118
+ inside_list = True
119
+ normalized_lines.append(line)
120
+ elif inside_list and line.strip() == "":
121
+ if i < len(lines) - 1 and not re.match(
122
+ r"^(\d+\.|-|\*|\+)\s", lines[i + 1].strip()
123
+ ):
124
+ normalized_lines.append(line)
125
+ continue
126
+ else:
127
+ inside_list = False
128
+ normalized_lines.append(line)
129
+
130
+ return "\n".join(normalized_lines)
131
+
132
+
133
+ def convert_mdtext(md_text):
134
+ code_block_pattern = re.compile(r"```(.*?)(?:```|$)", re.DOTALL)
135
+ inline_code_pattern = re.compile(r"`(.*?)`", re.DOTALL)
136
+ code_blocks = code_block_pattern.findall(md_text)
137
+ non_code_parts = code_block_pattern.split(md_text)[::2]
138
+
139
+ result = []
140
+ for non_code, code in zip(non_code_parts, code_blocks + [""]):
141
+ if non_code.strip():
142
+ non_code = normalize_markdown(non_code)
143
+ if inline_code_pattern.search(non_code):
144
+ result.append(markdown(non_code, extensions=["tables"]))
145
+ else:
146
+ result.append(mdtex2html.convert(non_code, extensions=["tables"]))
147
+ if code.strip():
148
+ code = f"\n```{code}\n\n```"
149
+ code = markdown_to_html_with_syntax_highlight(code)
150
+ result.append(code)
151
+ result = "".join(result)
152
+ result += ALREADY_CONVERTED_MARK
153
+ return result
154
+
155
+
156
+ def convert_asis(userinput):
157
+ return f'<p style="white-space:pre-wrap;">{html.escape(userinput)}</p>{ALREADY_CONVERTED_MARK}'
158
+
159
+
160
+ def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
161
+ return any(s.endswith(stop_word) for stop_word in stop_words)
162
+
163
+
164
+ def detect_converted_mark(userinput):
165
+ return bool(userinput.endswith(ALREADY_CONVERTED_MARK))
166
+
167
+
168
+ def detect_language(code):
169
+ first_line = "" if code.startswith("\n") else code.strip().split("\n", 1)[0]
170
+ language = first_line.lower() if first_line else ""
171
+ code_without_language = code[len(first_line) :].lstrip() if first_line else code
172
+ return language, code_without_language
173
+
174
+
175
+ def convert_to_markdown(text):
176
+ text = text.replace("$", "&#36;")
177
+ text = text.replace("\r\n", "\n")
178
+
179
+ def replace_leading_tabs_and_spaces(line):
180
+ new_line = []
181
+
182
+ for char in line:
183
+ if char == "\t":
184
+ new_line.append("&#9;")
185
+ elif char == " ":
186
+ new_line.append("&nbsp;")
187
+ else:
188
+ break
189
+ return "".join(new_line) + line[len(new_line) :]
190
+
191
+ markdown_text = ""
192
+ lines = text.split("\n")
193
+ in_code_block = False
194
+
195
+ for line in lines:
196
+ if in_code_block is False and line.startswith("```"):
197
+ in_code_block = True
198
+ markdown_text += f"{line}\n"
199
+ elif in_code_block is True and line.startswith("```"):
200
+ in_code_block = False
201
+ markdown_text += f"{line}\n"
202
+ elif in_code_block:
203
+ markdown_text += f"{line}\n"
204
+ else:
205
+ line = replace_leading_tabs_and_spaces(line)
206
+ line = re.sub(r"^(#)", r"\\\1", line)
207
+ markdown_text += f"{line} \n"
208
+
209
+ return markdown_text
210
+
211
+
212
+ def add_language_tag(text):
213
+ def detect_language(code_block):
214
+ try:
215
+ lexer = guess_lexer(code_block)
216
+ return lexer.name.lower()
217
+ except ClassNotFound:
218
+ return ""
219
+
220
+ code_block_pattern = re.compile(r"(```)(\w*\n[^`]+```)", re.MULTILINE)
221
+
222
+ def replacement(match):
223
+ code_block = match.group(2)
224
+ if match.group(2).startswith("\n"):
225
+ language = detect_language(code_block)
226
+ return (
227
+ f"```{language}{code_block}```" if language else f"```\n{code_block}```"
228
+ )
229
+ else:
230
+ return match.group(1) + code_block + "```"
231
+
232
+ text2 = code_block_pattern.sub(replacement, text)
233
+ return text2
234
+
235
+
236
+ def is_variable_assigned(var_name: str) -> bool:
237
+ return var_name in locals()
238
+
239
+
240
+ def pil_to_base64(
241
+ image: Image.Image,
242
+ alt: str = "user upload image",
243
+ resize: bool = True,
244
+ max_size: int = MAX_IMAGE_SIZE,
245
+ min_size: int = MIN_IMAGE_SIZE,
246
+ format: str = "JPEG",
247
+ quality: int = 95
248
+ ) -> str:
249
+
250
+ if resize:
251
+ max_hw, min_hw = max(image.size), min(image.size)
252
+ aspect_ratio = max_hw / min_hw
253
+ shortest_edge = int(min(max_size / aspect_ratio, min_size, min_hw))
254
+ longest_edge = int(shortest_edge * aspect_ratio)
255
+ W, H = image.size
256
+ if H > W:
257
+ H, W = longest_edge, shortest_edge
258
+ else:
259
+ H, W = shortest_edge, longest_edge
260
+ image = image.resize((W, H))
261
+
262
+ buffered = io.BytesIO()
263
+ image.save(buffered, format=format, quality=quality)
264
+ img_b64_str = base64.b64encode(buffered.getvalue()).decode()
265
+ img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="{alt}" />'
266
+
267
+ return img_str
268
+
269
+
270
+ def parse_ref_bbox(response, image: Image.Image):
271
+ try:
272
+ image = image.copy()
273
+ image_h, image_w = image.size
274
+ draw = ImageDraw.Draw(image)
275
+
276
+ ref = re.findall(r'<\|ref\|>.*?<\|/ref\|>', response)
277
+ bbox = re.findall(r'<\|det\|>.*?<\|/det\|>', response)
278
+ assert len(ref) == len(bbox)
279
+
280
+ if len(ref) == 0:
281
+ return None
282
+
283
+ boxes, labels = [], []
284
+ for box, label in zip(bbox, ref):
285
+ box = box.replace('<|det|>', '').replace('<|/det|>', '')
286
+ label = label.replace('<|ref|>', '').replace('<|/ref|>', '')
287
+ box = box[1:-1]
288
+ for onebox in re.findall(r'\[.*?\]', box):
289
+ boxes.append(eval(onebox))
290
+ labels.append(label)
291
+
292
+ for indice, (box, label) in enumerate(zip(boxes, labels)):
293
+ box = (
294
+ int(box[0] / 999 * image_h),
295
+ int(box[1] / 999 * image_w),
296
+ int(box[2] / 999 * image_h),
297
+ int(box[3] / 999 * image_w),
298
+ )
299
+
300
+ box_color = BOX2COLOR[indice % len(BOX2COLOR.keys())]
301
+ box_width = 3
302
+ draw.rectangle(box, outline=box_color, width=box_width)
303
+
304
+ text_x = box[0]
305
+ text_y = box[1] - 20
306
+ text_color = box_color
307
+ font = ImageFont.truetype("deepseek_vl2/serve/assets/simsun.ttc", size=20)
308
+ draw.text((text_x, text_y), label, font=font, fill=text_color)
309
+
310
+ # print(f"boxes = {boxes}, labels = {labels}, re-render = {image}")
311
+ return image
312
+ except:
313
+ return None
314
+
315
+
316
+ def display_example(image_list):
317
+ images_html = ""
318
+ for i, img_path in enumerate(image_list):
319
+ image = Image.open(img_path)
320
+ buffered = io.BytesIO()
321
+ image.save(buffered, format="PNG", quality=100)
322
+ img_b64_str = base64.b64encode(buffered.getvalue()).decode()
323
+ img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="{img_path}" style="height:80px; margin-right: 10px;" />'
324
+ images_html += img_str
325
+
326
+ result_html = f"""
327
+ <div style="display: flex; align-items: center; margin-bottom: 10px;">
328
+ <div style="flex: 1; margin-right: 10px;">{images_html}</div>
329
+ </div>
330
+ """
331
+
332
+ return result_html
333
+
deepseek_vl2/serve/assets/Kelpy-Codos.js ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /**
2
+ * Copyright (c) 2023-2024 DeepSeek.
3
+ *
4
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
5
+ * this software and associated documentation files (the "Software"), to deal in
6
+ * the Software without restriction, including without limitation the rights to
7
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
8
+ * the Software, and to permit persons to whom the Software is furnished to do so,
9
+ * subject to the following conditions:
10
+ *
11
+ * The above copyright notice and this permission notice shall be included in all
12
+ * copies or substantial portions of the Software.
13
+ *
14
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
16
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
17
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
18
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
19
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
20
+ */
21
+
22
+ // ==UserScript==
23
+ // @name Kelpy Codos
24
+ // @namespace https://github.com/Keldos-Li/Kelpy-Codos
25
+ // @version 1.0.5
26
+ // @author Keldos; https://keldos.me/
27
+ // @description Add copy button to PRE tags before CODE tag, for Chuanhu ChatGPT especially.
28
+ // Based on Chuanhu ChatGPT version: ac04408 (2023-3-22)
29
+ // @license GPL-3.0
30
+ // @grant none
31
+ // ==/UserScript==
32
+
33
+ (function () {
34
+ "use strict";
35
+
36
+ function addCopyButton(pre) {
37
+ var code = pre.querySelector("code");
38
+ if (!code) {
39
+ return; // 如果没有找到 <code> 元素,则不添加按钮
40
+ }
41
+ var firstChild = code.firstChild;
42
+ if (!firstChild) {
43
+ return; // 如果 <code> 元素没有子节点,则不添加按钮
44
+ }
45
+ var button = document.createElement("button");
46
+ button.textContent = "\uD83D\uDCCE"; // 使用 📎 符号作为“复制”按钮的文本
47
+ button.style.position = "relative";
48
+ button.style.float = "right";
49
+ button.style.fontSize = "1em"; // 可选:调整按钮大小
50
+ button.style.background = "none"; // 可选:去掉背景颜色
51
+ button.style.border = "none"; // 可选:去掉边框
52
+ button.style.cursor = "pointer"; // 可选:显示指针样式
53
+ button.addEventListener("click", function () {
54
+ var range = document.createRange();
55
+ range.selectNodeContents(code);
56
+ range.setStartBefore(firstChild); // 将范围设置为第一个子节点之前
57
+ var selection = window.getSelection();
58
+ selection.removeAllRanges();
59
+ selection.addRange(range);
60
+
61
+ try {
62
+ var success = document.execCommand("copy");
63
+ if (success) {
64
+ button.textContent = "\u2714";
65
+ setTimeout(function () {
66
+ button.textContent = "\uD83D\uDCCE"; // 恢复按钮为“复制”
67
+ }, 2000);
68
+ } else {
69
+ button.textContent = "\u2716";
70
+ }
71
+ } catch (e) {
72
+ console.error(e);
73
+ button.textContent = "\u2716";
74
+ }
75
+
76
+ selection.removeAllRanges();
77
+ });
78
+ code.insertBefore(button, firstChild); // 将按钮插入到第一个子元素之前
79
+ }
80
+
81
+ function handleNewElements(mutationsList, observer) {
82
+ for (var mutation of mutationsList) {
83
+ if (mutation.type === "childList") {
84
+ for (var node of mutation.addedNodes) {
85
+ if (node.nodeName === "PRE") {
86
+ addCopyButton(node);
87
+ }
88
+ }
89
+ }
90
+ }
91
+ }
92
+
93
+ var observer = new MutationObserver(handleNewElements);
94
+ observer.observe(document.documentElement, {
95
+ childList: true,
96
+ subtree: true,
97
+ });
98
+
99
+ document.querySelectorAll("pre").forEach(addCopyButton);
100
+ })();
deepseek_vl2/serve/assets/avatar.png ADDED

Git LFS Details

  • SHA256: 3395211efab793b89a4e579d90bd606b0eb435e2566aedf54bec585e436a8e71
  • Pointer size: 130 Bytes
  • Size of remote file: 62.1 kB
deepseek_vl2/serve/assets/custom.css ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /**
2
+ * Copyright (c) 2023-2024 DeepSeek.
3
+ *
4
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
5
+ * this software and associated documentation files (the "Software"), to deal in
6
+ * the Software without restriction, including without limitation the rights to
7
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
8
+ * the Software, and to permit persons to whom the Software is furnished to do so,
9
+ * subject to the following conditions:
10
+ *
11
+ * The above copyright notice and this permission notice shall be included in all
12
+ * copies or substantial portions of the Software.
13
+ *
14
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
16
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
17
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
18
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
19
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
20
+ */
21
+
22
+ :root {
23
+ --chatbot-color-light: #f3f3f3;
24
+ --chatbot-color-dark: #121111;
25
+ }
26
+
27
+ /* status_display */
28
+ #status_display {
29
+ display: flex;
30
+ min-height: 2.5em;
31
+ align-items: flex-end;
32
+ justify-content: flex-end;
33
+ }
34
+ #status_display p {
35
+ font-size: 0.85em;
36
+ font-family: monospace;
37
+ color: var(--body-text-color-subdued);
38
+ }
39
+
40
+ /* usage_display */
41
+ #usage_display {
42
+ height: 1em;
43
+ }
44
+ #usage_display p {
45
+ padding: 0 1em;
46
+ font-size: 0.85em;
47
+ font-family: monospace;
48
+ color: var(--body-text-color-subdued);
49
+ }
50
+ /* list */
51
+ ol:not(.options),
52
+ ul:not(.options) {
53
+ padding-inline-start: 2em !important;
54
+ }
55
+
56
+ /* Thank @Keldos-Li for fixing it */
57
+ /* Light mode (default) */
58
+ #deepseek_chatbot {
59
+ background-color: var(--chatbot-color-light) !important;
60
+ color: #000000 !important;
61
+ }
62
+ [data-testid="bot"] {
63
+ background-color: #ffffff !important;
64
+ }
65
+ [data-testid="user"] {
66
+ background-color: #95ec69 !important;
67
+ }
68
+
69
+ /* Dark mode */
70
+ .dark #deepseek_chatbot {
71
+ background-color: var(--chatbot-color-dark) !important;
72
+ color: #ffffff !important;
73
+ }
74
+ .dark [data-testid="bot"] {
75
+ background-color: #2c2c2c !important;
76
+ }
77
+ .dark [data-testid="user"] {
78
+ background-color: #26b561 !important;
79
+ }
80
+
81
+ #deepseek_chatbot {
82
+ height: 100%;
83
+ min-height: 800px;
84
+ flex-grow: 1;
85
+ overflow: auto;
86
+ }
87
+
88
+ [class*="message"] {
89
+ border-radius: var(--radius-xl) !important;
90
+ border: none;
91
+ padding: var(--spacing-xl) !important;
92
+ font-size: var(--text-md) !important;
93
+ line-height: var(--line-md) !important;
94
+ min-height: calc(var(--text-md) * var(--line-md) + 2 * var(--spacing-xl));
95
+ min-width: calc(var(--text-md) * var(--line-md) + 2 * var(--spacing-xl));
96
+ }
97
+ [data-testid="bot"] {
98
+ max-width: 85%;
99
+ border-bottom-left-radius: 0 !important;
100
+ }
101
+ [data-testid="user"] {
102
+ max-width: 85%;
103
+ width: auto !important;
104
+ border-bottom-right-radius: 0 !important;
105
+ }
106
+ /* Table */
107
+ table {
108
+ margin: 1em 0;
109
+ border-collapse: collapse;
110
+ empty-cells: show;
111
+ }
112
+ td,
113
+ th {
114
+ border: 1.2px solid var(--border-color-primary) !important;
115
+ padding: 0.2em;
116
+ }
117
+ thead {
118
+ background-color: rgba(175, 184, 193, 0.2);
119
+ }
120
+ thead th {
121
+ padding: 0.5em 0.2em;
122
+ }
123
+ /* Inline code */
124
+ #deepseek_chatbot code {
125
+ display: inline;
126
+ white-space: break-spaces;
127
+ border-radius: 6px;
128
+ margin: 0 2px 0 2px;
129
+ padding: 0.2em 0.4em 0.1em 0.4em;
130
+ background-color: rgba(175, 184, 193, 0.2);
131
+ }
132
+ /* Code block */
133
+ #deepseek_chatbot pre code {
134
+ display: block;
135
+ overflow: auto;
136
+ white-space: pre;
137
+ background-color: #1c1d1e !important;
138
+ border-radius: 10px;
139
+ padding: 1.4em 1.2em 0em 1.4em;
140
+ margin: 1.2em 2em 1.2em 0.5em;
141
+ color: #fdf8f8;
142
+ box-shadow: 6px 6px 16px hsla(0, 0%, 0%, 0.2);
143
+ }
144
+ /* Hightlight */
145
+ #deepseek_chatbot .highlight {
146
+ background-color: transparent;
147
+ }
148
+ #deepseek_chatbot .highlight .hll {
149
+ background-color: #49483e;
150
+ }
151
+ #deepseek_chatbot .highlight .c {
152
+ color: #75715e;
153
+ } /* Comment */
154
+ #deepseek_chatbot .highlight .err {
155
+ color: #960050;
156
+ background-color: #1e0010;
157
+ } /* Error */
158
+ #deepseek_chatbot .highlight .k {
159
+ color: #66d9ef;
160
+ } /* Keyword */
161
+ #deepseek_chatbot .highlight .l {
162
+ color: #ae81ff;
163
+ } /* Literal */
164
+ #deepseek_chatbot .highlight .n {
165
+ color: #f8f8f2;
166
+ } /* Name */
167
+ #deepseek_chatbot .highlight .o {
168
+ color: #f92672;
169
+ } /* Operator */
170
+ #deepseek_chatbot .highlight .p {
171
+ color: #f8f8f2;
172
+ } /* Punctuation */
173
+ #deepseek_chatbot .highlight .ch {
174
+ color: #75715e;
175
+ } /* Comment.Hashbang */
176
+ #deepseek_chatbot .highlight .cm {
177
+ color: #75715e;
178
+ } /* Comment.Multiline */
179
+ #deepseek_chatbot .highlight .cp {
180
+ color: #75715e;
181
+ } /* Comment.Preproc */
182
+ #deepseek_chatbot .highlight .cpf {
183
+ color: #75715e;
184
+ } /* Comment.PreprocFile */
185
+ #deepseek_chatbot .highlight .c1 {
186
+ color: #75715e;
187
+ } /* Comment.Single */
188
+ #deepseek_chatbot .highlight .cs {
189
+ color: #75715e;
190
+ } /* Comment.Special */
191
+ #deepseek_chatbot .highlight .gd {
192
+ color: #f92672;
193
+ } /* Generic.Deleted */
194
+ #deepseek_chatbot .highlight .ge {
195
+ font-style: italic;
196
+ } /* Generic.Emph */
197
+ #deepseek_chatbot .highlight .gi {
198
+ color: #a6e22e;
199
+ } /* Generic.Inserted */
200
+ #deepseek_chatbot .highlight .gs {
201
+ font-weight: bold;
202
+ } /* Generic.Strong */
203
+ #deepseek_chatbot .highlight .gu {
204
+ color: #75715e;
205
+ } /* Generic.Subheading */
206
+ #deepseek_chatbot .highlight .kc {
207
+ color: #66d9ef;
208
+ } /* Keyword.Constant */
209
+ #deepseek_chatbot .highlight .kd {
210
+ color: #66d9ef;
211
+ } /* Keyword.Declaration */
212
+ #deepseek_chatbot .highlight .kn {
213
+ color: #f92672;
214
+ } /* Keyword.Namespace */
215
+ #deepseek_chatbot .highlight .kp {
216
+ color: #66d9ef;
217
+ } /* Keyword.Pseudo */
218
+ #deepseek_chatbot .highlight .kr {
219
+ color: #66d9ef;
220
+ } /* Keyword.Reserved */
221
+ #deepseek_chatbot .highlight .kt {
222
+ color: #66d9ef;
223
+ } /* Keyword.Type */
224
+ #deepseek_chatbot .highlight .ld {
225
+ color: #e6db74;
226
+ } /* Literal.Date */
227
+ #deepseek_chatbot .highlight .m {
228
+ color: #ae81ff;
229
+ } /* Literal.Number */
230
+ #deepseek_chatbot .highlight .s {
231
+ color: #e6db74;
232
+ } /* Literal.String */
233
+ #deepseek_chatbot .highlight .na {
234
+ color: #a6e22e;
235
+ } /* Name.Attribute */
236
+ #deepseek_chatbot .highlight .nb {
237
+ color: #f8f8f2;
238
+ } /* Name.Builtin */
239
+ #deepseek_chatbot .highlight .nc {
240
+ color: #a6e22e;
241
+ } /* Name.Class */
242
+ #deepseek_chatbot .highlight .no {
243
+ color: #66d9ef;
244
+ } /* Name.Constant */
245
+ #deepseek_chatbot .highlight .nd {
246
+ color: #a6e22e;
247
+ } /* Name.Decorator */
248
+ #deepseek_chatbot .highlight .ni {
249
+ color: #f8f8f2;
250
+ } /* Name.Entity */
251
+ #deepseek_chatbot .highlight .ne {
252
+ color: #a6e22e;
253
+ } /* Name.Exception */
254
+ #deepseek_chatbot .highlight .nf {
255
+ color: #a6e22e;
256
+ } /* Name.Function */
257
+ #deepseek_chatbot .highlight .nl {
258
+ color: #f8f8f2;
259
+ } /* Name.Label */
260
+ #deepseek_chatbot .highlight .nn {
261
+ color: #f8f8f2;
262
+ } /* Name.Namespace */
263
+ #deepseek_chatbot .highlight .nx {
264
+ color: #a6e22e;
265
+ } /* Name.Other */
266
+ #deepseek_chatbot .highlight .py {
267
+ color: #f8f8f2;
268
+ } /* Name.Property */
269
+ #deepseek_chatbot .highlight .nt {
270
+ color: #f92672;
271
+ } /* Name.Tag */
272
+ #deepseek_chatbot .highlight .nv {
273
+ color: #f8f8f2;
274
+ } /* Name.Variable */
275
+ #deepseek_chatbot .highlight .ow {
276
+ color: #f92672;
277
+ } /* Operator.Word */
278
+ #deepseek_chatbot .highlight .w {
279
+ color: #f8f8f2;
280
+ } /* Text.Whitespace */
281
+ #deepseek_chatbot .highlight .mb {
282
+ color: #ae81ff;
283
+ } /* Literal.Number.Bin */
284
+ #deepseek_chatbot .highlight .mf {
285
+ color: #ae81ff;
286
+ } /* Literal.Number.Float */
287
+ #deepseek_chatbot .highlight .mh {
288
+ color: #ae81ff;
289
+ } /* Literal.Number.Hex */
290
+ #deepseek_chatbot .highlight .mi {
291
+ color: #ae81ff;
292
+ } /* Literal.Number.Integer */
293
+ #deepseek_chatbot .highlight .mo {
294
+ color: #ae81ff;
295
+ } /* Literal.Number.Oct */
296
+ #deepseek_chatbot .highlight .sa {
297
+ color: #e6db74;
298
+ } /* Literal.String.Affix */
299
+ #deepseek_chatbot .highlight .sb {
300
+ color: #e6db74;
301
+ } /* Literal.String.Backtick */
302
+ #deepseek_chatbot .highlight .sc {
303
+ color: #e6db74;
304
+ } /* Literal.String.Char */
305
+ #deepseek_chatbot .highlight .dl {
306
+ color: #e6db74;
307
+ } /* Literal.String.Delimiter */
308
+ #deepseek_chatbot .highlight .sd {
309
+ color: #e6db74;
310
+ } /* Literal.String.Doc */
311
+ #deepseek_chatbot .highlight .s2 {
312
+ color: #e6db74;
313
+ } /* Literal.String.Double */
314
+ #deepseek_chatbot .highlight .se {
315
+ color: #ae81ff;
316
+ } /* Literal.String.Escape */
317
+ #deepseek_chatbot .highlight .sh {
318
+ color: #e6db74;
319
+ } /* Literal.String.Heredoc */
320
+ #deepseek_chatbot .highlight .si {
321
+ color: #e6db74;
322
+ } /* Literal.String.Interpol */
323
+ #deepseek_chatbot .highlight .sx {
324
+ color: #e6db74;
325
+ } /* Literal.String.Other */
326
+ #deepseek_chatbot .highlight .sr {
327
+ color: #e6db74;
328
+ } /* Literal.String.Regex */
329
+ #deepseek_chatbot .highlight .s1 {
330
+ color: #e6db74;
331
+ } /* Literal.String.Single */
332
+ #deepseek_chatbot .highlight .ss {
333
+ color: #e6db74;
334
+ } /* Literal.String.Symbol */
335
+ #deepseek_chatbot .highlight .bp {
336
+ color: #f8f8f2;
337
+ } /* Name.Builtin.Pseudo */
338
+ #deepseek_chatbot .highlight .fm {
339
+ color: #a6e22e;
340
+ } /* Name.Function.Magic */
341
+ #deepseek_chatbot .highlight .vc {
342
+ color: #f8f8f2;
343
+ } /* Name.Variable.Class */
344
+ #deepseek_chatbot .highlight .vg {
345
+ color: #f8f8f2;
346
+ } /* Name.Variable.Global */
347
+ #deepseek_chatbot .highlight .vi {
348
+ color: #f8f8f2;
349
+ } /* Name.Variable.Instance */
350
+ #deepseek_chatbot .highlight .vm {
351
+ color: #f8f8f2;
352
+ } /* Name.Variable.Magic */
353
+ #deepseek_chatbot .highlight .il {
354
+ color: #ae81ff;
355
+ } /* Literal.Number.Integer.Long */
deepseek_vl2/serve/assets/custom.js ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /**
2
+ * Copyright (c) 2023-2024 DeepSeek.
3
+ *
4
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
5
+ * this software and associated documentation files (the "Software"), to deal in
6
+ * the Software without restriction, including without limitation the rights to
7
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
8
+ * the Software, and to permit persons to whom the Software is furnished to do so,
9
+ * subject to the following conditions:
10
+ *
11
+ * The above copyright notice and this permission notice shall be included in all
12
+ * copies or substantial portions of the Software.
13
+ *
14
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
16
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
17
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
18
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
19
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
20
+ */
21
+
22
+ // custom javascript here
deepseek_vl2/serve/assets/favicon.ico ADDED

Git LFS Details

  • SHA256: 28dab71bd4190f41c7de510615e91afcba52ad7ce6826fbf86b213205be62b45
  • Pointer size: 130 Bytes
  • Size of remote file: 15.4 kB
deepseek_vl2/serve/assets/simsun.ttc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff7d69bfa6588d3fdedbddbe3a29ac11f0c50236723ee72a9ea49ec3e2553f5d
3
+ size 15323200
deepseek_vl2/serve/inference.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ from threading import Thread
21
+ from typing import List
22
+
23
+ import torch
24
+ import transformers
25
+ from joblib.externals.cloudpickle import instance
26
+ from transformers import (
27
+ AutoModelForCausalLM,
28
+ StoppingCriteria,
29
+ StoppingCriteriaList,
30
+ TextIteratorStreamer,
31
+ )
32
+
33
+ from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM
34
+ from deepseek_vl2.models.conversation import Conversation
35
+
36
+
37
+ def load_model(model_path, dtype=torch.bfloat16):
38
+ vl_chat_processor = DeepseekVLV2Processor.from_pretrained(model_path)
39
+ tokenizer = vl_chat_processor.tokenizer
40
+
41
+ vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(
42
+ model_path, trust_remote_code=True, torch_dtype=dtype
43
+ )
44
+ vl_gpt = vl_gpt.cuda().eval()
45
+ return tokenizer, vl_gpt, vl_chat_processor
46
+
47
+
48
+ def convert_conversation_to_prompts(conversation: Conversation):
49
+ conv_prompts = []
50
+
51
+ last_image = None
52
+
53
+ messages = conversation.messages
54
+ for i in range(0, len(messages), 2):
55
+
56
+ if isinstance(messages[i][1], tuple):
57
+ text, images = messages[i][1]
58
+ last_image = images[-1]
59
+ else:
60
+ text, images = messages[i][1], []
61
+
62
+ prompt = {
63
+ "role": messages[i][0],
64
+ "content": text,
65
+ "images": images
66
+ }
67
+ response = {"role": messages[i + 1][0], "content": messages[i + 1][1]}
68
+ conv_prompts.extend([prompt, response])
69
+
70
+ return conv_prompts, last_image
71
+
72
+
73
+ class StoppingCriteriaSub(StoppingCriteria):
74
+ def __init__(self, stops=[], encounters=1):
75
+ super().__init__()
76
+ self.stops = [stop.to("cuda") for stop in stops]
77
+
78
+ def __call__(
79
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
80
+ ):
81
+ for stop in self.stops:
82
+ if input_ids.shape[-1] < len(stop):
83
+ continue
84
+ if torch.all((stop == input_ids[0][-len(stop) :])).item():
85
+ return True
86
+
87
+ return False
88
+
89
+
90
+ @torch.inference_mode()
91
+ def deepseek_generate(
92
+ conversations: list,
93
+ vl_gpt: torch.nn.Module,
94
+ vl_chat_processor: DeepseekVLV2Processor,
95
+ tokenizer: transformers.PreTrainedTokenizer,
96
+ stop_words: list,
97
+ max_length: int = 256,
98
+ temperature: float = 1.0,
99
+ top_p: float = 1.0,
100
+ repetition_penalty: float = 1.1,
101
+ chunk_size: int = -1
102
+ ):
103
+ pil_images = []
104
+ for message in conversations:
105
+ if "images" not in message:
106
+ continue
107
+ pil_images.extend(message["images"])
108
+
109
+ prepare_inputs = vl_chat_processor.__call__(
110
+ conversations=conversations,
111
+ images=pil_images,
112
+ inference_mode=True,
113
+ force_batchify=True,
114
+ system_prompt=""
115
+ ).to(vl_gpt.device)
116
+
117
+ return generate(
118
+ vl_gpt,
119
+ tokenizer,
120
+ prepare_inputs,
121
+ max_gen_len=max_length,
122
+ temperature=temperature,
123
+ repetition_penalty=repetition_penalty,
124
+ top_p=top_p,
125
+ stop_words=stop_words,
126
+ chunk_size=chunk_size
127
+ )
128
+
129
+
130
+ @torch.inference_mode()
131
+ def generate(
132
+ vl_gpt,
133
+ tokenizer,
134
+ prepare_inputs,
135
+ max_gen_len: int = 256,
136
+ temperature: float = 0,
137
+ repetition_penalty=1.1,
138
+ top_p: float = 0.95,
139
+ stop_words: List[str] = [],
140
+ chunk_size: int = -1
141
+ ):
142
+ """Stream the text output from the multimodality model with prompt and image inputs."""
143
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
144
+
145
+ stop_words_ids = [
146
+ torch.tensor(tokenizer.encode(stop_word)) for stop_word in stop_words
147
+ ]
148
+ stopping_criteria = StoppingCriteriaList(
149
+ [StoppingCriteriaSub(stops=stop_words_ids)]
150
+ )
151
+
152
+ if chunk_size != -1:
153
+ inputs_embeds, past_key_values = vl_gpt.incremental_prefilling(
154
+ input_ids=prepare_inputs.input_ids,
155
+ images=prepare_inputs.images,
156
+ images_seq_mask=prepare_inputs.images_seq_mask,
157
+ images_spatial_crop=prepare_inputs.images_spatial_crop,
158
+ attention_mask=prepare_inputs.attention_mask,
159
+ chunk_size=chunk_size
160
+ )
161
+ else:
162
+ inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
163
+ past_key_values = None
164
+
165
+ generation_config = dict(
166
+ inputs_embeds=inputs_embeds,
167
+ input_ids=prepare_inputs.input_ids,
168
+ images=prepare_inputs.images,
169
+ images_seq_mask=prepare_inputs.images_seq_mask,
170
+ images_spatial_crop=prepare_inputs.images_spatial_crop,
171
+ attention_mask=prepare_inputs.attention_mask,
172
+ past_key_values=past_key_values,
173
+ pad_token_id=tokenizer.eos_token_id,
174
+ bos_token_id=tokenizer.bos_token_id,
175
+ eos_token_id=tokenizer.eos_token_id,
176
+ max_new_tokens=max_gen_len,
177
+ do_sample=True,
178
+ use_cache=True,
179
+ streamer=streamer,
180
+ stopping_criteria=stopping_criteria,
181
+ )
182
+
183
+ if temperature > 0:
184
+ generation_config.update(
185
+ {
186
+ "do_sample": True,
187
+ "top_p": top_p,
188
+ "temperature": temperature,
189
+ "repetition_penalty": repetition_penalty,
190
+ }
191
+ )
192
+ else:
193
+ generation_config["do_sample"] = False
194
+
195
+ thread = Thread(target=vl_gpt.generate, kwargs=generation_config)
196
+ thread.start()
197
+
198
+ yield from streamer
deepseek_vl2/utils/__init__.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
deepseek_vl2/utils/io.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024 DeepSeek.
2
+ #
3
+ # Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ # this software and associated documentation files (the "Software"), to deal in
5
+ # the Software without restriction, including without limitation the rights to
6
+ # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
7
+ # the Software, and to permit persons to whom the Software is furnished to do so,
8
+ # subject to the following conditions:
9
+ #
10
+ # The above copyright notice and this permission notice shall be included in all
11
+ # copies or substantial portions of the Software.
12
+ #
13
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15
+ # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16
+ # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17
+ # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18
+ # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19
+
20
+ import json
21
+ from typing import Dict, List
22
+
23
+ import PIL.Image
24
+ import torch
25
+ from transformers import AutoModelForCausalLM
26
+
27
+
28
+ def load_pretrained_model(model_path: str):
29
+
30
+ from deepseek_vl2.models.processing_deepseek_vl_v2 import DeepseekVLV2Processor
31
+ from deepseek_vl2.models.modeling_deepseek_vl_v2 import DeepseekVLV2ForCausalLM
32
+
33
+ vl_chat_processor = DeepseekVLV2Processor.from_pretrained(model_path)
34
+ tokenizer = vl_chat_processor.tokenizer
35
+
36
+ vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(
37
+ model_path, trust_remote_code=True
38
+ )
39
+ vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
40
+
41
+ return tokenizer, vl_chat_processor, vl_gpt
42
+
43
+
44
+ def load_pil_images(conversations: List[Dict[str, str]]) -> List[PIL.Image.Image]:
45
+ """
46
+
47
+ Args:
48
+ conversations (List[Dict[str, str]]): the conversations with a list of messages. An example is :
49
+ [
50
+ {
51
+ "role": "User",
52
+ "content": "<image>\nExtract all information from this image and convert them into markdown format.",
53
+ "images": ["./examples/table_datasets.png"]
54
+ },
55
+ {"role": "Assistant", "content": ""},
56
+ ]
57
+
58
+ Returns:
59
+ pil_images (List[PIL.Image.Image]): the list of PIL images.
60
+
61
+ """
62
+
63
+ pil_images = []
64
+
65
+ for message in conversations:
66
+ if "images" not in message:
67
+ continue
68
+
69
+ for image_path in message["images"]:
70
+ pil_img = PIL.Image.open(image_path)
71
+ pil_img = pil_img.convert("RGB")
72
+ pil_images.append(pil_img)
73
+
74
+ return pil_images
75
+
76
+
77
+ def load_json(filepath):
78
+ with open(filepath, "r") as f:
79
+ data = json.load(f)
80
+ return data
images/grounding_conversation_1.jpeg ADDED

Git LFS Details

  • SHA256: a677348986a7205e589bfc94cc2137b5ece4566460227debb09832f0fbc4bd36
  • Pointer size: 131 Bytes
  • Size of remote file: 272 kB
images/icl_vg_2.jpeg ADDED

Git LFS Details

  • SHA256: 13897d001f3bd25f175208d93c99da11e7f7579b895b46d5bbcb5b220b426075
  • Pointer size: 131 Bytes
  • Size of remote file: 866 kB
images/incontext_visual_grounding_1.jpeg ADDED

Git LFS Details

  • SHA256: b89cf9c13d4e13f16fb6bfeb259f0309714f771a5e0c9ac22272d55eb4dd8f6f
  • Pointer size: 132 Bytes
  • Size of remote file: 1.08 MB
images/logo.png ADDED

Git LFS Details

  • SHA256: 42b06f9dd7d81c0790510da5fb4c1d909c0c32cd786ff0f00ea788809d1a71e3
  • Pointer size: 129 Bytes
  • Size of remote file: 8.66 kB
images/logo.svg ADDED

Git LFS Details

  • SHA256: ac13bdc805820c46bf0faf053aa5d31f72b051794abfe1dd72a682f09de2966b
  • Pointer size: 130 Bytes
  • Size of remote file: 10.7 kB
images/monday.jpg ADDED

Git LFS Details

  • SHA256: 4306b1317f8f0b732e1c53d4b01cb214c4f070454c10e4333f80bec97d23cd93
  • Pointer size: 130 Bytes
  • Size of remote file: 49 kB
images/multi_image_1.jpeg ADDED

Git LFS Details

  • SHA256: 5df896a4a07e127281c60fc957f8b3d73f4735b3258a0bf762b4383557f8fa9a
  • Pointer size: 131 Bytes
  • Size of remote file: 212 kB
images/multi_image_2.jpeg ADDED

Git LFS Details

  • SHA256: 251fe7ad58f44db139a6af5ed489e027eca93ae60878b83f3e709c7d6f0112a1
  • Pointer size: 130 Bytes
  • Size of remote file: 56.1 kB
images/multi_image_3.jpeg ADDED

Git LFS Details

  • SHA256: a944b9221f08879f5e0afa7b8c58153f8af89d9cc27a2922184a11ec539eb3aa
  • Pointer size: 131 Bytes
  • Size of remote file: 143 kB
images/qr.jpeg ADDED

Git LFS Details

  • SHA256: 34765ad106f7e538586dbd0cfc392ef86c1775eb866b3cf0d2762f30b61a8488
  • Pointer size: 131 Bytes
  • Size of remote file: 525 kB
images/sample.jpg ADDED

Git LFS Details

  • SHA256: e7268329bc7737aff135b3790dd686c503995e5889a6ffb428cb18206914d365
  • Pointer size: 132 Bytes
  • Size of remote file: 9.84 MB
images/vg_2.jpeg ADDED

Git LFS Details

  • SHA256: b9f3c328bce218b2a3233c77ef60fe4ffb6daddb86c5955bbc476819dc85787a
  • Pointer size: 131 Bytes
  • Size of remote file: 246 kB
images/visual_grounding_1.jpeg ADDED

Git LFS Details

  • SHA256: a917d1dbc75728de41441013b0b368483b723417e377ec1160b9a9436e7fc5b4
  • Pointer size: 131 Bytes
  • Size of remote file: 222 kB
images/visual_grounding_2.jpg ADDED

Git LFS Details

  • SHA256: e82b02ef8f92832aa04ce8c18879fee6aa724f5cd5081985ea1eed172f8233ce
  • Pointer size: 130 Bytes
  • Size of remote file: 74.3 kB
images/visual_grounding_3.png ADDED

Git LFS Details

  • SHA256: 70edf60ba6abd1d1278862dc6b97613053248a4f6b20781bb9623ad25f2eae02
  • Pointer size: 131 Bytes
  • Size of remote file: 115 kB
images/vl2_teaser.jpeg ADDED

Git LFS Details

  • SHA256: 1d816c1729eddfd9509a29f3f9391d608c48aef24d66749b1b25ab960ca7f89c
  • Pointer size: 130 Bytes
  • Size of remote file: 94 kB