File size: 3,775 Bytes
6e2ad17
 
df66f6e
6e2ad17
df66f6e
 
6e2ad17
 
df66f6e
9b14fa5
 
 
6e2ad17
55cc480
6e2ad17
 
 
2a5f9fb
6e2ad17
 
 
 
ccefec9
6e2ad17
 
 
 
 
2a5f9fb
6e2ad17
 
 
 
 
2a5f9fb
6e2ad17
 
 
9b14fa5
 
 
6e2ad17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5f9fb
6e2ad17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a5f9fb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import json
import os
import pprint
import re
from datetime import datetime, timezone

import click
from colorama import Fore
from huggingface_hub import HfApi, snapshot_download

from src.envs import EVAL_REQUESTS_PATH, QUEUE_REPO, TOKEN


precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ", "float32")
model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned")
weight_types = ("Original", "Delta", "Adapter")


def get_model_size(model_info, precision: str):
    size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
    try:
        model_size = round(model_info.safetensors["total"] / 1e9, 3)
    except (AttributeError, TypeError):
        try:
            size_match = re.search(size_pattern, model_info.modelId.lower())
            model_size = size_match.group(0)
            model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
        except AttributeError:
            return 0  # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py

    size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
    model_size = size_factor * model_size
    return model_size


def main():
    api = HfApi()
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
    snapshot_download(
        repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", token=TOKEN
    )

    model_name = click.prompt("Enter model name")
    revision = click.prompt("Enter revision", default="main")
    precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
    model_type = click.prompt("Enter model type", type=click.Choice(model_types))
    weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
    base_model = click.prompt("Enter base model", default="")
    status = click.prompt("Enter status", default="FINISHED")

    try:
        model_info = api.model_info(repo_id=model_name, revision=revision)
    except Exception as e:
        print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
        return 1

    model_size = get_model_size(model_info=model_info, precision=precision)

    try:
        license = model_info.cardData["license"]
    except Exception:
        license = "?"

    eval_entry = {
        "model": model_name,
        "base_model": base_model,
        "revision": revision,
        "private": False,
        "precision": precision,
        "weight_type": weight_type,
        "status": status,
        "submitted_time": current_time,
        "model_type": model_type,
        "likes": model_info.likes,
        "params": model_size,
        "license": license,
    }

    user_name = ""
    model_path = model_name
    if "/" in model_name:
        user_name = model_name.split("/")[0]
        model_path = model_name.split("/")[1]

    pprint.pprint(eval_entry)

    if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
        click.echo("continuing...")

        out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
        os.makedirs(out_dir, exist_ok=True)
        out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"

        with open(out_path, "w") as f:
            f.write(json.dumps(eval_entry))

        api.upload_file(
            path_or_fileobj=out_path,
            path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
            repo_id=QUEUE_REPO,
            repo_type="dataset",
            commit_message=f"Add {model_name} to eval queue",
        )
    else:
        click.echo("aborting...")


if __name__ == "__main__":
    main()