Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
•
8b88d2c
1
Parent(s):
1b74edb
adding_log_visualizer (#1)
Browse files- Adding logging visualizer (a130fc382412b1c3f664e294da1aeb43ed30fa00)
- Keeping default of checking every 10 min (ccb39b1f08fe0f04412d9e0401a1dc556b149fb0)
- Increasing log lines to visualize (ef89b19123267a7694493f28cd25a8ac8ed4942b)
- Adding better console handling (d800d714b0f2ae12ffaa23c053413f1951123238)
Co-authored-by: Derek Thomas <derek-thomas@users.noreply.huggingface.co>
- .gitignore +1 -0
- app.py +19 -20
- main_backend_harness.py +4 -2
- main_backend_lighteval.py +7 -3
- requirements.txt +6 -1
- src/backend/manage_requests.py +7 -4
- src/backend/run_eval_suite_harness.py +6 -4
- src/backend/run_eval_suite_lighteval.py +4 -2
- src/display/css_html_js.py +20 -0
- src/display/log_visualizer.py +42 -0
- src/envs.py +3 -0
- src/logging.py +53 -31
.gitignore
CHANGED
@@ -5,6 +5,7 @@ __pycache__/
|
|
5 |
.ipynb_checkpoints
|
6 |
*ipynb
|
7 |
.vscode/
|
|
|
8 |
|
9 |
eval-queue/
|
10 |
eval-results/
|
|
|
5 |
.ipynb_checkpoints
|
6 |
*ipynb
|
7 |
.vscode/
|
8 |
+
.idea/
|
9 |
|
10 |
eval-queue/
|
11 |
eval-results/
|
app.py
CHANGED
@@ -1,27 +1,26 @@
|
|
1 |
-
import sys
|
2 |
import logging
|
3 |
-
import
|
4 |
-
import gradio as gr
|
5 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
|
11 |
-
sys.stdout = LOGGER
|
12 |
-
sys.stderr = LOGGER
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
logs = gr.Code(interactive=False)
|
22 |
-
demo.load(read_logs, None, logs, every=1)
|
23 |
-
|
24 |
-
scheduler = BackgroundScheduler()
|
25 |
-
scheduler.add_job(launch_backend, "interval", seconds=60) # will only allow one job to be run at the same time
|
26 |
-
scheduler.start()
|
27 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
|
1 |
import logging
|
2 |
+
import sys
|
|
|
|
|
3 |
|
4 |
+
import gradio as gr
|
5 |
+
from main_backend_lighteval import run_auto_eval
|
6 |
+
from src.display.log_visualizer import log_file_to_html_string
|
7 |
+
from src.display.css_html_js import dark_mode_gradio_js
|
8 |
+
from src.envs import REFRESH_RATE
|
9 |
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
|
|
|
|
|
12 |
|
13 |
+
intro_md = f"""
|
14 |
+
# Intro
|
15 |
+
This is just a visual for the auto evaluator. Note that the lines of the log visual are reversed.
|
16 |
+
# Logs
|
17 |
+
"""
|
18 |
|
19 |
+
with gr.Blocks(js=dark_mode_gradio_js) as demo:
|
20 |
+
with gr.Tab("Application"):
|
21 |
+
gr.Markdown(intro_md)
|
22 |
+
dummy = gr.Markdown(run_auto_eval, every=REFRESH_RATE, visible=False)
|
23 |
+
output = gr.HTML(log_file_to_html_string, every=10)
|
24 |
|
25 |
+
if __name__ == '__main__':
|
26 |
+
demo.queue(default_concurrency_limit=40).launch(server_name="0.0.0.0", show_error=True, server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main_backend_harness.py
CHANGED
@@ -11,9 +11,11 @@ from src.backend.sort_queue import sort_models_by_priority
|
|
11 |
|
12 |
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, DEVICE, API, LIMIT, TOKEN
|
13 |
from src.about import Tasks, NUM_FEWSHOT
|
|
|
14 |
TASKS_HARNESS = [task.value.benchmark for task in Tasks]
|
15 |
|
16 |
-
logging.basicConfig(level=logging.ERROR)
|
|
|
17 |
pp = pprint.PrettyPrinter(width=80)
|
18 |
|
19 |
PENDING_STATUS = "PENDING"
|
@@ -51,7 +53,7 @@ def run_auto_eval():
|
|
51 |
return
|
52 |
|
53 |
eval_request = eval_requests[0]
|
54 |
-
pp.
|
55 |
|
56 |
set_eval_request(
|
57 |
api=API,
|
|
|
11 |
|
12 |
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, DEVICE, API, LIMIT, TOKEN
|
13 |
from src.about import Tasks, NUM_FEWSHOT
|
14 |
+
from src.logging import setup_logger
|
15 |
TASKS_HARNESS = [task.value.benchmark for task in Tasks]
|
16 |
|
17 |
+
# logging.basicConfig(level=logging.ERROR)
|
18 |
+
logger = setup_logger(__name__)
|
19 |
pp = pprint.PrettyPrinter(width=80)
|
20 |
|
21 |
PENDING_STATUS = "PENDING"
|
|
|
53 |
return
|
54 |
|
55 |
eval_request = eval_requests[0]
|
56 |
+
logger.info(pp.pformat(eval_request))
|
57 |
|
58 |
set_eval_request(
|
59 |
api=API,
|
main_backend_lighteval.py
CHANGED
@@ -11,8 +11,11 @@ from src.backend.sort_queue import sort_models_by_priority
|
|
11 |
|
12 |
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, API, LIMIT, TOKEN, ACCELERATOR, VENDOR, REGION
|
13 |
from src.about import TASKS_LIGHTEVAL
|
|
|
14 |
|
15 |
-
|
|
|
|
|
16 |
pp = pprint.PrettyPrinter(width=80)
|
17 |
|
18 |
PENDING_STATUS = "PENDING"
|
@@ -44,13 +47,14 @@ def run_auto_eval():
|
|
44 |
# Sort the evals by priority (first submitted first run)
|
45 |
eval_requests = sort_models_by_priority(api=API, models=eval_requests)
|
46 |
|
47 |
-
|
48 |
|
49 |
if len(eval_requests) == 0:
|
50 |
return
|
51 |
|
52 |
eval_request = eval_requests[0]
|
53 |
-
pp.
|
|
|
54 |
|
55 |
set_eval_request(
|
56 |
api=API,
|
|
|
11 |
|
12 |
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, API, LIMIT, TOKEN, ACCELERATOR, VENDOR, REGION
|
13 |
from src.about import TASKS_LIGHTEVAL
|
14 |
+
from src.logging import setup_logger
|
15 |
|
16 |
+
logger = setup_logger(__name__)
|
17 |
+
|
18 |
+
# logging.basicConfig(level=logging.ERROR)
|
19 |
pp = pprint.PrettyPrinter(width=80)
|
20 |
|
21 |
PENDING_STATUS = "PENDING"
|
|
|
47 |
# Sort the evals by priority (first submitted first run)
|
48 |
eval_requests = sort_models_by_priority(api=API, models=eval_requests)
|
49 |
|
50 |
+
logger.info(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
|
51 |
|
52 |
if len(eval_requests) == 0:
|
53 |
return
|
54 |
|
55 |
eval_request = eval_requests[0]
|
56 |
+
logger.info(pp.pformat(eval_request))
|
57 |
+
|
58 |
|
59 |
set_eval_request(
|
60 |
api=API,
|
requirements.txt
CHANGED
@@ -16,4 +16,9 @@ tokenizers>=0.15.0
|
|
16 |
git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463#egg=lm-eval
|
17 |
git+https://github.com/huggingface/lighteval.git#egg=lighteval
|
18 |
accelerate==0.24.1
|
19 |
-
sentencepiece
|
|
|
|
|
|
|
|
|
|
|
|
16 |
git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463#egg=lm-eval
|
17 |
git+https://github.com/huggingface/lighteval.git#egg=lighteval
|
18 |
accelerate==0.24.1
|
19 |
+
sentencepiece
|
20 |
+
|
21 |
+
# Log Visualizer
|
22 |
+
beautifulsoup4==4.12.2
|
23 |
+
lxml==4.9.3
|
24 |
+
rich==13.3.4
|
src/backend/manage_requests.py
CHANGED
@@ -5,6 +5,9 @@ from typing import Optional
|
|
5 |
|
6 |
from huggingface_hub import HfApi, snapshot_download
|
7 |
from src.envs import TOKEN
|
|
|
|
|
|
|
8 |
|
9 |
@dataclass
|
10 |
class EvalRequest:
|
@@ -103,20 +106,20 @@ def check_completed_evals(
|
|
103 |
|
104 |
for eval_request in running_evals:
|
105 |
model = eval_request.model
|
106 |
-
|
107 |
-
|
108 |
|
109 |
output_path = model
|
110 |
output_file = f"{local_dir_results}/{output_path}/results*.json"
|
111 |
output_file_exists = len(glob.glob(output_file)) > 0
|
112 |
|
113 |
if output_file_exists:
|
114 |
-
|
115 |
f"EXISTS output file exists for {model} setting it to {completed_status}"
|
116 |
)
|
117 |
set_eval_request(api, eval_request, completed_status, hf_repo, local_dir)
|
118 |
else:
|
119 |
-
|
120 |
f"No result file found for {model} setting it to {failed_status}"
|
121 |
)
|
122 |
set_eval_request(api, eval_request, failed_status, hf_repo, local_dir)
|
|
|
5 |
|
6 |
from huggingface_hub import HfApi, snapshot_download
|
7 |
from src.envs import TOKEN
|
8 |
+
from src.logging import setup_logger
|
9 |
+
|
10 |
+
logger = setup_logger(__name__)
|
11 |
|
12 |
@dataclass
|
13 |
class EvalRequest:
|
|
|
106 |
|
107 |
for eval_request in running_evals:
|
108 |
model = eval_request.model
|
109 |
+
logger.info("====================================")
|
110 |
+
logger.info(f"Checking {model}")
|
111 |
|
112 |
output_path = model
|
113 |
output_file = f"{local_dir_results}/{output_path}/results*.json"
|
114 |
output_file_exists = len(glob.glob(output_file)) > 0
|
115 |
|
116 |
if output_file_exists:
|
117 |
+
logger.info(
|
118 |
f"EXISTS output file exists for {model} setting it to {completed_status}"
|
119 |
)
|
120 |
set_eval_request(api, eval_request, completed_status, hf_repo, local_dir)
|
121 |
else:
|
122 |
+
logger.info(
|
123 |
f"No result file found for {model} setting it to {failed_status}"
|
124 |
)
|
125 |
set_eval_request(api, eval_request, failed_status, hf_repo, local_dir)
|
src/backend/run_eval_suite_harness.py
CHANGED
@@ -7,18 +7,20 @@ from lm_eval import tasks, evaluator, utils
|
|
7 |
|
8 |
from src.envs import RESULTS_REPO, API
|
9 |
from src.backend.manage_requests import EvalRequest
|
|
|
10 |
|
11 |
logging.getLogger("openai").setLevel(logging.WARNING)
|
|
|
12 |
|
13 |
def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None):
|
14 |
if limit:
|
15 |
-
|
16 |
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
|
17 |
)
|
18 |
|
19 |
task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
|
20 |
|
21 |
-
|
22 |
|
23 |
results = evaluator.simple_evaluate(
|
24 |
model="hf-causal-experimental", # "hf-causal"
|
@@ -38,14 +40,14 @@ def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_siz
|
|
38 |
results["config"]["model_sha"] = eval_request.revision
|
39 |
|
40 |
dumped = json.dumps(results, indent=2)
|
41 |
-
|
42 |
|
43 |
output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
|
44 |
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
45 |
with open(output_path, "w") as f:
|
46 |
f.write(dumped)
|
47 |
|
48 |
-
|
49 |
|
50 |
API.upload_file(
|
51 |
path_or_fileobj=output_path,
|
|
|
7 |
|
8 |
from src.envs import RESULTS_REPO, API
|
9 |
from src.backend.manage_requests import EvalRequest
|
10 |
+
from src.logging import setup_logger
|
11 |
|
12 |
logging.getLogger("openai").setLevel(logging.WARNING)
|
13 |
+
logger = setup_logger(__name__)
|
14 |
|
15 |
def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None):
|
16 |
if limit:
|
17 |
+
logger.info(
|
18 |
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
|
19 |
)
|
20 |
|
21 |
task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
|
22 |
|
23 |
+
logger.info(f"Selected Tasks: {task_names}")
|
24 |
|
25 |
results = evaluator.simple_evaluate(
|
26 |
model="hf-causal-experimental", # "hf-causal"
|
|
|
40 |
results["config"]["model_sha"] = eval_request.revision
|
41 |
|
42 |
dumped = json.dumps(results, indent=2)
|
43 |
+
logger.info(dumped)
|
44 |
|
45 |
output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
|
46 |
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
47 |
with open(output_path, "w") as f:
|
48 |
f.write(dumped)
|
49 |
|
50 |
+
logger.info(evaluator.make_table(results))
|
51 |
|
52 |
API.upload_file(
|
53 |
path_or_fileobj=output_path,
|
src/backend/run_eval_suite_lighteval.py
CHANGED
@@ -7,12 +7,14 @@ from lighteval.main_accelerate import main, EnvConfig, create_model_config, load
|
|
7 |
|
8 |
from src.envs import RESULTS_REPO, CACHE_PATH, TOKEN
|
9 |
from src.backend.manage_requests import EvalRequest
|
|
|
10 |
|
11 |
logging.getLogger("openai").setLevel(logging.WARNING)
|
|
|
12 |
|
13 |
def run_evaluation(eval_request: EvalRequest, task_names: str, batch_size: int, local_dir: str, accelerator: str, region: str, vendor: str, instance_size: str, instance_type: str, limit=None):
|
14 |
if limit:
|
15 |
-
|
16 |
|
17 |
args = {
|
18 |
"endpoint_model_name":f"{eval_request.model}_{eval_request.precision}".lower(),
|
@@ -43,7 +45,7 @@ def run_evaluation(eval_request: EvalRequest, task_names: str, batch_size: int,
|
|
43 |
results["config"]["model_sha"] = eval_request.revision
|
44 |
|
45 |
dumped = json.dumps(results, indent=2)
|
46 |
-
|
47 |
except Exception: # if eval failed, we force a cleanup
|
48 |
env_config = EnvConfig(token=TOKEN, cache_dir=args['cache_dir'])
|
49 |
|
|
|
7 |
|
8 |
from src.envs import RESULTS_REPO, CACHE_PATH, TOKEN
|
9 |
from src.backend.manage_requests import EvalRequest
|
10 |
+
from src.logging import setup_logger
|
11 |
|
12 |
logging.getLogger("openai").setLevel(logging.WARNING)
|
13 |
+
logger = setup_logger(__name__)
|
14 |
|
15 |
def run_evaluation(eval_request: EvalRequest, task_names: str, batch_size: int, local_dir: str, accelerator: str, region: str, vendor: str, instance_size: str, instance_type: str, limit=None):
|
16 |
if limit:
|
17 |
+
logger.info("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
|
18 |
|
19 |
args = {
|
20 |
"endpoint_model_name":f"{eval_request.model}_{eval_request.precision}".lower(),
|
|
|
45 |
results["config"]["model_sha"] = eval_request.revision
|
46 |
|
47 |
dumped = json.dumps(results, indent=2)
|
48 |
+
logger.info(dumped)
|
49 |
except Exception: # if eval failed, we force a cleanup
|
50 |
env_config = EnvConfig(token=TOKEN, cache_dir=args['cache_dir'])
|
51 |
|
src/display/css_html_js.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
style_content = """
|
2 |
+
pre, code {
|
3 |
+
background-color: #272822;
|
4 |
+
}
|
5 |
+
.scrollable {
|
6 |
+
font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace;
|
7 |
+
height: 500px;
|
8 |
+
overflow: auto;
|
9 |
+
}
|
10 |
+
"""
|
11 |
+
dark_mode_gradio_js = """
|
12 |
+
function refresh() {
|
13 |
+
const url = new URL(window.location);
|
14 |
+
|
15 |
+
if (url.searchParams.get('__theme') !== 'dark') {
|
16 |
+
url.searchParams.set('__theme', 'dark');
|
17 |
+
window.location.href = url.href;
|
18 |
+
}
|
19 |
+
}
|
20 |
+
"""
|
src/display/log_visualizer.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import StringIO
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
from bs4 import BeautifulSoup
|
5 |
+
from rich.console import Console
|
6 |
+
from rich.syntax import Syntax
|
7 |
+
|
8 |
+
from src.display.css_html_js import style_content
|
9 |
+
from src.envs import NUM_LINES_VISUALIZE
|
10 |
+
from src.logging import log_file
|
11 |
+
|
12 |
+
proj_dir = Path(__name__).parent
|
13 |
+
|
14 |
+
|
15 |
+
def log_file_to_html_string():
|
16 |
+
with open(log_file, "rt") as f:
|
17 |
+
# Seek to the end of the file minus 300 lines
|
18 |
+
# Read the last 300 lines of the file
|
19 |
+
lines = f.readlines()
|
20 |
+
lines = lines[-NUM_LINES_VISUALIZE:]
|
21 |
+
|
22 |
+
# Syntax-highlight the last 300 lines of the file using the Python lexer and Monokai style
|
23 |
+
output = "".join(reversed(lines))
|
24 |
+
syntax = Syntax(output, "python", theme="monokai", word_wrap=True)
|
25 |
+
|
26 |
+
console = Console(record=True, width=150, style="#272822", file=StringIO())
|
27 |
+
console.print(syntax)
|
28 |
+
html_content = console.export_html(inline_styles=True)
|
29 |
+
|
30 |
+
# Parse the HTML content using BeautifulSoup
|
31 |
+
soup = BeautifulSoup(html_content, 'lxml')
|
32 |
+
|
33 |
+
# Modify the <pre> tag
|
34 |
+
pre_tag = soup.pre
|
35 |
+
pre_tag['class'] = 'scrollable'
|
36 |
+
del pre_tag['style']
|
37 |
+
|
38 |
+
# Add your custom styles and the .scrollable CSS to the <style> tag
|
39 |
+
style_tag = soup.style
|
40 |
+
style_tag.append(style_content)
|
41 |
+
|
42 |
+
return soup.prettify()
|
src/envs.py
CHANGED
@@ -31,5 +31,8 @@ EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
|
31 |
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
32 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
33 |
|
|
|
|
|
|
|
34 |
API = HfApi(token=TOKEN)
|
35 |
|
|
|
31 |
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
32 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
33 |
|
34 |
+
REFRESH_RATE = 10 * 60 # 10 min
|
35 |
+
NUM_LINES_VISUALIZE = 300
|
36 |
+
|
37 |
API = HfApi(token=TOKEN)
|
38 |
|
src/logging.py
CHANGED
@@ -1,32 +1,54 @@
|
|
1 |
import sys
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import sys
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
proj_dir = Path(__file__).parents[1]
|
5 |
+
|
6 |
+
log_file = proj_dir/"output.log"
|
7 |
+
|
8 |
+
|
9 |
+
import logging
|
10 |
+
|
11 |
+
|
12 |
+
def setup_logger(name: str):
|
13 |
+
logger = logging.getLogger(name)
|
14 |
+
logger.setLevel(logging.INFO)
|
15 |
+
|
16 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
17 |
+
|
18 |
+
# Create a file handler to write logs to a file
|
19 |
+
file_handler = logging.FileHandler(log_file)
|
20 |
+
file_handler.setLevel(logging.INFO)
|
21 |
+
file_handler.setFormatter(formatter)
|
22 |
+
logger.addHandler(file_handler)
|
23 |
+
|
24 |
+
return logger
|
25 |
+
|
26 |
+
# class Logger:
|
27 |
+
# def __init__(self):
|
28 |
+
# self.terminal = sys.stdout
|
29 |
+
# self.log = open(log_file, "a+")
|
30 |
+
#
|
31 |
+
# def write(self, message):
|
32 |
+
# self.terminal.write(message)
|
33 |
+
# self.log.write(message)
|
34 |
+
#
|
35 |
+
# def flush(self):
|
36 |
+
# self.terminal.flush()
|
37 |
+
# self.log.flush()
|
38 |
+
#
|
39 |
+
# def isatty(self):
|
40 |
+
# return False
|
41 |
+
#
|
42 |
+
# def read_logs():
|
43 |
+
# sys.stdout.flush()
|
44 |
+
# #API.upload_file(
|
45 |
+
# # path_or_fileobj="output.log",
|
46 |
+
# # path_in_repo="demo-backend.log",
|
47 |
+
# # repo_id="demo-leaderboard-backend/logs",
|
48 |
+
# # repo_type="dataset",
|
49 |
+
# #)
|
50 |
+
#
|
51 |
+
# with open(log_file, "r") as f:
|
52 |
+
# return f.read()
|
53 |
+
#
|
54 |
+
# LOGGER = Logger()
|