Spaces:
Sleeping
Sleeping
File size: 5,961 Bytes
87cc80e 297a2c6 87cc80e 297a2c6 ce7d026 87cc80e ce7d026 87cc80e 297a2c6 2c654db 7d58aac 2c654db 297a2c6 87cc80e 297a2c6 87cc80e 297a2c6 7d58aac 297a2c6 7d58aac 87cc80e ce7d026 87cc80e 7d58aac ce7d026 87cc80e ce7d026 718b31c ce7d026 87cc80e ce7d026 718b31c ce7d026 87cc80e 297a2c6 87cc80e 2c654db 297a2c6 7d58aac 87cc80e 297a2c6 7d58aac 297a2c6 4765a1d 297a2c6 87cc80e 718b31c 87cc80e 297a2c6 779dfc3 87cc80e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from sahi import utils, predict, AutoDetectionModel
from PIL import Image
import gradio as gr
import numpy
import torch
import os
os.system('pip install git+https://github.com/fcakyon/ultralyticsplus.git')
model_id_list = ['deprem-ml/Binafarktespit-yolo5x-v1-xview', 'SerdarHelli/deprem_satellite_labeled_yolov8', 'kadirnar/yolov7-v0.1']
current_device = "cuda" if torch.cuda.is_available() else "cpu"
model_types = ["YOLOv5", "YOLOv5 + SAHI", "YOLOv8", "YOLOv7"]
def sahi_yolov5_inference(
image,
model_id,
model_type,
image_size,
slice_height=512,
slice_width=512,
overlap_height_ratio=0.1,
overlap_width_ratio=0.1,
postprocess_type="NMS",
postprocess_match_metric="IOU",
postprocess_match_threshold=0.25,
postprocess_class_agnostic=False,
):
rect_th = None or max(round(sum(image.size) / 2 * 0.0001), 1)
text_th = None or max(rect_th - 2, 1)
if model_type == "YOLOv5":
# standard inference
model = AutoDetectionModel.from_pretrained(
model_type="yolov5",
model_path=model_id,
device=current_device,
confidence_threshold=0.5,
image_size=image_size,
)
prediction_result_1 = predict.get_prediction(
image=image, detection_model=model
)
visual_result_1 = utils.cv.visualize_object_predictions(
image=numpy.array(image),
object_prediction_list=prediction_result_1.object_prediction_list,
rect_th=rect_th,
text_th=text_th,
)
output = Image.fromarray(visual_result_1["image"])
return output
elif model_type == "YOLOv5 + SAHI":
model = AutoDetectionModel.from_pretrained(
model_type="yolov5",
model_path=model_id,
device=current_device,
confidence_threshold=0.5,
image_size=image_size,
)
prediction_result_2 = predict.get_sliced_prediction(
image=image,
detection_model=model,
slice_height=int(slice_height),
slice_width=int(slice_width),
overlap_height_ratio=overlap_height_ratio,
overlap_width_ratio=overlap_width_ratio,
postprocess_type=postprocess_type,
postprocess_match_metric=postprocess_match_metric,
postprocess_match_threshold=postprocess_match_threshold,
postprocess_class_agnostic=postprocess_class_agnostic,
)
visual_result_2 = utils.cv.visualize_object_predictions(
image=numpy.array(image),
object_prediction_list=prediction_result_2.object_prediction_list,
rect_th=rect_th,
text_th=text_th,
)
output = Image.fromarray(visual_result_2["image"])
return output
elif model_type == "YOLOv8":
from ultralyticsplus import YOLO, render_result
model = YOLO('SerdarHelli/deprem_satellite_labeled_yolov8')
result = model.predict(image, imgsz=image_size)[0]
render = render_result(model=model, image=image, result=result, rect_th=rect_th, text_th=text_th)
return render
elif model_type == "YOLOv7":
import yolov7
model = yolov7.load(model_id, device="cuda:0", hf_model=True, trace=False)
results = model([image], size=image_size)
return results.render()[0]
inputs = [
gr.Image(type="pil", label="Original Image"),
gr.Dropdown(choices=model_id_list,label="Choose Model",value=model_id_list[0]),
gr.Dropdown( choices=model_types, label="Choose Model Type", value=model_types[1]),
gr.Slider(minimum=128, maximum=2048, value=640, step=32, label="Image Size"),
gr.Slider(minimum=128, maximum=2048, value=512, step=32, label="Slice Height"),
gr.Slider(minimum=128, maximum=2048, value=512, step=32, label="Slice Width"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.1, label="Overlap Height Ratio"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.1, label="Overlap Width Ratio"),
gr.Dropdown(["NMS", "GREEDYNMM"], type="value", value="NMS", label="Postprocess Type"),
gr.Dropdown(["IOU", "IOS"], type="value", value="IOU", label="Postprocess Type"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.1, label="Postprocess Match Threshold"),
gr.Checkbox(value=True, label="Postprocess Class Agnostic"),
]
outputs = [gr.outputs.Image(type="pil", label="Output")]
title = "Building Detection from Satellite Images with SAHI + YOLOv5"
description = "SAHI + YOLOv5 demo for building detection from satellite images. Upload an image or click an example image to use."
article = "<p style='text-align: center'>SAHI is a lightweight vision library for performing large scale object detection/ instance segmentation.. <a href='https://github.com/obss/sahi'>SAHI Github</a> | <a href='https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80'>SAHI Blog</a> | <a href='https://github.com/fcakyon/yolov5-pip'>YOLOv5 Github</a> </p>"
examples = [
["data/26.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
["data/27.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
["data/28.jpg", 'deprem-ml/Binafarktespit-yolo5x-v1-xview', "YOLOv5 + SAHI", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
["data/31.jpg", 'deprem-ml/SerdarHelli-yolov8-v1-xview', "YOLOv8", 640, 512, 512, 0.1, 0.1, "NMS", "IOU", 0.25, False],
]
demo = gr.Interface(
sahi_yolov5_inference,
inputs,
outputs,
title=title,
description=description,
article=article,
examples=examples,
theme="huggingface",
cache_examples=True,
)
demo.launch(debug=True, enable_queue=True)
|