Shane922 commited on
Commit
55ac26c
·
1 Parent(s): 1db255b

add gradio demo

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ *.png filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (2025) Bytedance Ltd. and/or its affiliates
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import gradio as gr
15
+
16
+
17
+ import numpy as np
18
+ import os
19
+ import torch
20
+
21
+ from video_depth_anything.video_depth import VideoDepthAnything
22
+ from utils.dc_utils import read_video_frames, vis_sequence_depth, save_video
23
+
24
+ from huggingface_hub import hf_hub_download
25
+
26
+ examples = [
27
+ ['assets/example_videos/davis_rollercoaster.mp4'],
28
+ ]
29
+
30
+ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
31
+
32
+ model_configs = {
33
+ 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
34
+ 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
35
+ }
36
+
37
+ encoder2name = {
38
+ 'vits': 'Small',
39
+ 'vitl': 'Large',
40
+ }
41
+
42
+ encoder='vitl'
43
+ model_name = encoder2name[encoder]
44
+
45
+ video_depth_anything = VideoDepthAnything(**model_configs[encoder])
46
+ filepath = hf_hub_download(repo_id=f"depth-anything/Video-Depth-Anything-{model_name}", filename=f"video_depth_anything_{encoder}.pth", repo_type="model")
47
+ video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
48
+ video_depth_anything = video_depth_anything.to(DEVICE).eval()
49
+
50
+
51
+ title = "# Video Depth Anything"
52
+ description = """Official demo for **Video Depth Anything**.
53
+ Please refer to our [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
54
+
55
+
56
+ def infer_video_depth(
57
+ input_video: str,
58
+ max_len: int = -1,
59
+ target_fps: int = -1,
60
+ max_res: int = 1280,
61
+ output_dir: str = './outputs',
62
+ input_size: int = 518,
63
+ ):
64
+ frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
65
+ depth_list, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)
66
+ depth_list = np.stack(depth_list, axis=0)
67
+ vis = vis_sequence_depth(depth_list)
68
+ video_name = os.path.basename(input_video)
69
+ if not os.path.exists(output_dir):
70
+ os.makedirs(output_dir)
71
+
72
+ processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_src.mp4')
73
+ depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0]+'_vis.mp4')
74
+ save_video(frames, processed_video_path, fps=fps)
75
+ save_video(vis, depth_vis_path, fps=fps)
76
+
77
+ return [processed_video_path, depth_vis_path]
78
+
79
+
80
+ def construct_demo():
81
+ with gr.Blocks(analytics_enabled=False) as demo:
82
+ gr.Markdown(title)
83
+ gr.Markdown(description)
84
+ gr.Markdown("### Video Depth Prediction demo")
85
+
86
+ with gr.Row(equal_height=True):
87
+ with gr.Column(scale=1):
88
+ input_video = gr.Video(label="Input Video")
89
+
90
+ # with gr.Tab(label="Output"):
91
+ with gr.Column(scale=2):
92
+ with gr.Row(equal_height=True):
93
+ processed_video = gr.Video(
94
+ label="Preprocessed video",
95
+ interactive=False,
96
+ autoplay=True,
97
+ loop=True,
98
+ show_share_button=True,
99
+ scale=5,
100
+ )
101
+ depth_vis_video = gr.Video(
102
+ label="Generated Depth Video",
103
+ interactive=False,
104
+ autoplay=True,
105
+ loop=True,
106
+ show_share_button=True,
107
+ scale=5,
108
+ )
109
+
110
+ with gr.Row(equal_height=True):
111
+ with gr.Column(scale=1):
112
+ with gr.Row(equal_height=False):
113
+ with gr.Accordion("Advanced Settings", open=False):
114
+ max_len = gr.Slider(
115
+ label="max process length",
116
+ minimum=-1,
117
+ maximum=1000,
118
+ value=-1,
119
+ step=1,
120
+ )
121
+ target_fps = gr.Slider(
122
+ label="target FPS",
123
+ minimum=-1,
124
+ maximum=30,
125
+ value=15,
126
+ step=1,
127
+ )
128
+ max_res = gr.Slider(
129
+ label="max side resolution",
130
+ minimum=480,
131
+ maximum=1920,
132
+ value=1280,
133
+ step=1,
134
+ )
135
+ generate_btn = gr.Button("Generate")
136
+ with gr.Column(scale=2):
137
+ pass
138
+
139
+ gr.Examples(
140
+ examples=examples,
141
+ inputs=[
142
+ input_video,
143
+ max_len,
144
+ target_fps,
145
+ max_res
146
+ ],
147
+ outputs=[processed_video, depth_vis_video],
148
+ fn=infer_video_depth,
149
+ cache_examples="lazy",
150
+ )
151
+
152
+ generate_btn.click(
153
+ fn=infer_video_depth,
154
+ inputs=[
155
+ input_video,
156
+ max_len,
157
+ target_fps,
158
+ max_res
159
+ ],
160
+ outputs=[processed_video, depth_vis_video],
161
+ )
162
+
163
+ return demo
164
+
165
+ if __name__ == "__main__":
166
+ demo = construct_demo()
167
+ demo.queue()
168
+ demo.launch(share=True)
assets/example_videos/Tokyo-Walk_rgb.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:097f16c33dd8c8d1d2a24d9ea31a90b76bd0ee324b958a47385183e3547a63a8
3
+ size 2251450
assets/example_videos/davis_rollercoaster.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7268cbecd9806a1e90a416de50dc02e50b4ae01428d5971837cf679dd0c87cb8
3
+ size 1809560
assets/teaser_video_v2.png ADDED

Git LFS Details

  • SHA256: 7ab2bf5f739de9d00adafe15ac4225143b59e208b8f79af7dc22c417c3a4584f
  • Pointer size: 132 Bytes
  • Size of remote file: 3.8 MB
requirements.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio_imageslider
2
+ gradio==4.36.0
3
+ torch
4
+ torchvision
5
+ opencv-python
6
+ matplotlib
7
+ huggingface_hub
8
+ typing
9
+ tempfile
10
+ pillow
11
+ mediapy
12
+ decord
13
+ xformers
14
+ einops
15
+ math
16
+ functools
17
+ logging
18
+ easydict
19
+ tqdm
utils/dc_utils.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is originally from DepthCrafter/depthcrafter/utils.py at main · Tencent/DepthCrafter
2
+ # SPDX-License-Identifier: MIT License license
3
+ #
4
+ # This file may have been modified by ByteDance Ltd. and/or its affiliates on [date of modification]
5
+ # Original file is released under [ MIT License license], with the full license text available at [https://github.com/Tencent/DepthCrafter?tab=License-1-ov-file].
6
+ from typing import Union, List
7
+ import tempfile
8
+ import numpy as np
9
+ import PIL.Image
10
+ import matplotlib.cm as cm
11
+ import mediapy
12
+ import torch
13
+ from decord import VideoReader, cpu
14
+
15
+
16
+ def read_video_frames(video_path, process_length, target_fps=-1, max_res=-1, dataset="open"):
17
+
18
+ vid = VideoReader(video_path, ctx=cpu(0))
19
+ original_height, original_width = vid.get_batch([0]).shape[1:3]
20
+ height = original_height
21
+ width = original_width
22
+ if max_res > 0 and max(height, width) > max_res:
23
+ scale = max_res / max(original_height, original_width)
24
+ height = round(original_height * scale)
25
+ width = round(original_width * scale)
26
+
27
+ vid = VideoReader(video_path, ctx=cpu(0), width=width, height=height)
28
+
29
+ fps = vid.get_avg_fps() if target_fps == -1 else target_fps
30
+ stride = round(vid.get_avg_fps() / fps)
31
+ stride = max(stride, 1)
32
+ frames_idx = list(range(0, len(vid), stride))
33
+ if process_length != -1 and process_length < len(frames_idx):
34
+ frames_idx = frames_idx[:process_length]
35
+ frames = vid.get_batch(frames_idx).asnumpy()
36
+
37
+ return frames, fps
38
+
39
+
40
+ def save_video(
41
+ video_frames: Union[List[np.ndarray], List[PIL.Image.Image]],
42
+ output_video_path: str = None,
43
+ fps: int = 10,
44
+ crf: int = 18,
45
+ ) -> str:
46
+ if output_video_path is None:
47
+ output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
48
+
49
+ if isinstance(video_frames[0], np.ndarray):
50
+ video_frames = [frame.astype(np.uint8) for frame in video_frames]
51
+
52
+ elif isinstance(video_frames[0], PIL.Image.Image):
53
+ video_frames = [np.array(frame) for frame in video_frames]
54
+ mediapy.write_video(output_video_path, video_frames, fps=fps, crf=crf)
55
+ return output_video_path
56
+
57
+
58
+ class ColorMapper:
59
+ # a color mapper to map depth values to a certain colormap
60
+ def __init__(self, colormap: str = "inferno"):
61
+ self.colormap = torch.tensor(cm.get_cmap(colormap).colors)
62
+
63
+ def apply(self, image: torch.Tensor, v_min=None, v_max=None):
64
+ # assert len(image.shape) == 2
65
+ if v_min is None:
66
+ v_min = image.min()
67
+ if v_max is None:
68
+ v_max = image.max()
69
+ image = (image - v_min) / (v_max - v_min)
70
+ image = (image * 255).long()
71
+ image = self.colormap[image] * 255
72
+ return image
73
+
74
+
75
+ def vis_sequence_depth(depths: np.ndarray, v_min=None, v_max=None):
76
+ visualizer = ColorMapper()
77
+ if v_min is None:
78
+ v_min = depths.min()
79
+ if v_max is None:
80
+ v_max = depths.max()
81
+ res = visualizer.apply(torch.tensor(depths), v_min=v_min, v_max=v_max).numpy()
82
+ return res
utils/util.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (2025) Bytedance Ltd. and/or its affiliates
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import numpy as np
15
+
16
+ def compute_scale_and_shift(prediction, target, mask, scale_only=False):
17
+ if scale_only:
18
+ return compute_scale(prediction, target, mask), 0
19
+ else:
20
+ return compute_scale_and_shift_full(prediction, target, mask)
21
+
22
+
23
+ def compute_scale(prediction, target, mask):
24
+ # system matrix: A = [[a_00, a_01], [a_10, a_11]]
25
+ prediction = prediction.astype(np.float32)
26
+ target = target.astype(np.float32)
27
+ mask = mask.astype(np.float32)
28
+
29
+ a_00 = np.sum(mask * prediction * prediction)
30
+ a_01 = np.sum(mask * prediction)
31
+ a_11 = np.sum(mask)
32
+
33
+ # right hand side: b = [b_0, b_1]
34
+ b_0 = np.sum(mask * prediction * target)
35
+
36
+ x_0 = b_0 / (a_00 + 1e-6)
37
+
38
+ return x_0
39
+
40
+ def compute_scale_and_shift_full(prediction, target, mask):
41
+ # system matrix: A = [[a_00, a_01], [a_10, a_11]]
42
+ prediction = prediction.astype(np.float32)
43
+ target = target.astype(np.float32)
44
+ mask = mask.astype(np.float32)
45
+
46
+ a_00 = np.sum(mask * prediction * prediction)
47
+ a_01 = np.sum(mask * prediction)
48
+ a_11 = np.sum(mask)
49
+
50
+ b_0 = np.sum(mask * prediction * target)
51
+ b_1 = np.sum(mask * target)
52
+
53
+ x_0 = 1
54
+ x_1 = 0
55
+
56
+ det = a_00 * a_11 - a_01 * a_01
57
+
58
+ if det != 0:
59
+ x_0 = (a_11 * b_0 - a_01 * b_1) / det
60
+ x_1 = (-a_01 * b_0 + a_00 * b_1) / det
61
+
62
+ return x_0, x_1
63
+
64
+
65
+ def get_interpolate_frames(frame_list_pre, frame_list_post):
66
+ assert len(frame_list_pre) == len(frame_list_post)
67
+ min_w = 0.0
68
+ max_w = 1.0
69
+ step = (max_w - min_w) / (len(frame_list_pre)-1)
70
+ post_w_list = [min_w] + [i * step for i in range(1,len(frame_list_pre)-1)] + [max_w]
71
+ interpolated_frames = []
72
+ for i in range(len(frame_list_pre)):
73
+ interpolated_frames.append(frame_list_pre[i] * (1-post_w_list[i]) + frame_list_post[i] * post_w_list[i])
74
+ return interpolated_frames
video_depth_anything/dinov2.py ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
+ # References:
7
+ # https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
8
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
9
+
10
+ from functools import partial
11
+ import math
12
+ import logging
13
+ from typing import Sequence, Tuple, Union, Callable
14
+
15
+ import torch
16
+ import torch.nn as nn
17
+ import torch.utils.checkpoint
18
+ from torch.nn.init import trunc_normal_
19
+
20
+ from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
21
+
22
+
23
+ logger = logging.getLogger("dinov2")
24
+
25
+
26
+ def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
27
+ if not depth_first and include_root:
28
+ fn(module=module, name=name)
29
+ for child_name, child_module in module.named_children():
30
+ child_name = ".".join((name, child_name)) if name else child_name
31
+ named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
32
+ if depth_first and include_root:
33
+ fn(module=module, name=name)
34
+ return module
35
+
36
+
37
+ class BlockChunk(nn.ModuleList):
38
+ def forward(self, x):
39
+ for b in self:
40
+ x = b(x)
41
+ return x
42
+
43
+
44
+ class DinoVisionTransformer(nn.Module):
45
+ def __init__(
46
+ self,
47
+ img_size=224,
48
+ patch_size=16,
49
+ in_chans=3,
50
+ embed_dim=768,
51
+ depth=12,
52
+ num_heads=12,
53
+ mlp_ratio=4.0,
54
+ qkv_bias=True,
55
+ ffn_bias=True,
56
+ proj_bias=True,
57
+ drop_path_rate=0.0,
58
+ drop_path_uniform=False,
59
+ init_values=None, # for layerscale: None or 0 => no layerscale
60
+ embed_layer=PatchEmbed,
61
+ act_layer=nn.GELU,
62
+ block_fn=Block,
63
+ ffn_layer="mlp",
64
+ block_chunks=1,
65
+ num_register_tokens=0,
66
+ interpolate_antialias=False,
67
+ interpolate_offset=0.1,
68
+ ):
69
+ """
70
+ Args:
71
+ img_size (int, tuple): input image size
72
+ patch_size (int, tuple): patch size
73
+ in_chans (int): number of input channels
74
+ embed_dim (int): embedding dimension
75
+ depth (int): depth of transformer
76
+ num_heads (int): number of attention heads
77
+ mlp_ratio (int): ratio of mlp hidden dim to embedding dim
78
+ qkv_bias (bool): enable bias for qkv if True
79
+ proj_bias (bool): enable bias for proj in attn if True
80
+ ffn_bias (bool): enable bias for ffn if True
81
+ drop_path_rate (float): stochastic depth rate
82
+ drop_path_uniform (bool): apply uniform drop rate across blocks
83
+ weight_init (str): weight init scheme
84
+ init_values (float): layer-scale init values
85
+ embed_layer (nn.Module): patch embedding layer
86
+ act_layer (nn.Module): MLP activation layer
87
+ block_fn (nn.Module): transformer block class
88
+ ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
89
+ block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
90
+ num_register_tokens: (int) number of extra cls tokens (so-called "registers")
91
+ interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
92
+ interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
93
+ """
94
+ super().__init__()
95
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
96
+
97
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
98
+ self.num_tokens = 1
99
+ self.n_blocks = depth
100
+ self.num_heads = num_heads
101
+ self.patch_size = patch_size
102
+ self.num_register_tokens = num_register_tokens
103
+ self.interpolate_antialias = interpolate_antialias
104
+ self.interpolate_offset = interpolate_offset
105
+
106
+ self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
107
+ num_patches = self.patch_embed.num_patches
108
+
109
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
110
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
111
+ assert num_register_tokens >= 0
112
+ self.register_tokens = (
113
+ nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
114
+ )
115
+
116
+ if drop_path_uniform is True:
117
+ dpr = [drop_path_rate] * depth
118
+ else:
119
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
120
+
121
+ if ffn_layer == "mlp":
122
+ logger.info("using MLP layer as FFN")
123
+ ffn_layer = Mlp
124
+ elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
125
+ logger.info("using SwiGLU layer as FFN")
126
+ ffn_layer = SwiGLUFFNFused
127
+ elif ffn_layer == "identity":
128
+ logger.info("using Identity layer as FFN")
129
+
130
+ def f(*args, **kwargs):
131
+ return nn.Identity()
132
+
133
+ ffn_layer = f
134
+ else:
135
+ raise NotImplementedError
136
+
137
+ blocks_list = [
138
+ block_fn(
139
+ dim=embed_dim,
140
+ num_heads=num_heads,
141
+ mlp_ratio=mlp_ratio,
142
+ qkv_bias=qkv_bias,
143
+ proj_bias=proj_bias,
144
+ ffn_bias=ffn_bias,
145
+ drop_path=dpr[i],
146
+ norm_layer=norm_layer,
147
+ act_layer=act_layer,
148
+ ffn_layer=ffn_layer,
149
+ init_values=init_values,
150
+ )
151
+ for i in range(depth)
152
+ ]
153
+ if block_chunks > 0:
154
+ self.chunked_blocks = True
155
+ chunked_blocks = []
156
+ chunksize = depth // block_chunks
157
+ for i in range(0, depth, chunksize):
158
+ # this is to keep the block index consistent if we chunk the block list
159
+ chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
160
+ self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
161
+ else:
162
+ self.chunked_blocks = False
163
+ self.blocks = nn.ModuleList(blocks_list)
164
+
165
+ self.norm = norm_layer(embed_dim)
166
+ self.head = nn.Identity()
167
+
168
+ self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
169
+
170
+ self.init_weights()
171
+
172
+ def init_weights(self):
173
+ trunc_normal_(self.pos_embed, std=0.02)
174
+ nn.init.normal_(self.cls_token, std=1e-6)
175
+ if self.register_tokens is not None:
176
+ nn.init.normal_(self.register_tokens, std=1e-6)
177
+ named_apply(init_weights_vit_timm, self)
178
+
179
+ def interpolate_pos_encoding(self, x, w, h):
180
+ previous_dtype = x.dtype
181
+ npatch = x.shape[1] - 1
182
+ N = self.pos_embed.shape[1] - 1
183
+ if npatch == N and w == h:
184
+ return self.pos_embed
185
+ pos_embed = self.pos_embed.float()
186
+ class_pos_embed = pos_embed[:, 0]
187
+ patch_pos_embed = pos_embed[:, 1:]
188
+ dim = x.shape[-1]
189
+ w0 = w // self.patch_size
190
+ h0 = h // self.patch_size
191
+ # we add a small number to avoid floating point error in the interpolation
192
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
193
+ # DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
194
+ w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
195
+ # w0, h0 = w0 + 0.1, h0 + 0.1
196
+
197
+ sqrt_N = math.sqrt(N)
198
+ sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
199
+ patch_pos_embed = nn.functional.interpolate(
200
+ patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
201
+ scale_factor=(sx, sy),
202
+ # (int(w0), int(h0)), # to solve the upsampling shape issue
203
+ mode="bicubic",
204
+ antialias=self.interpolate_antialias
205
+ )
206
+
207
+ assert int(w0) == patch_pos_embed.shape[-2]
208
+ assert int(h0) == patch_pos_embed.shape[-1]
209
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
210
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
211
+
212
+ def prepare_tokens_with_masks(self, x, masks=None):
213
+ B, nc, w, h = x.shape
214
+ x = self.patch_embed(x)
215
+ if masks is not None:
216
+ x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
217
+
218
+ x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
219
+ x = x + self.interpolate_pos_encoding(x, w, h)
220
+
221
+ if self.register_tokens is not None:
222
+ x = torch.cat(
223
+ (
224
+ x[:, :1],
225
+ self.register_tokens.expand(x.shape[0], -1, -1),
226
+ x[:, 1:],
227
+ ),
228
+ dim=1,
229
+ )
230
+
231
+ return x
232
+
233
+ def forward_features_list(self, x_list, masks_list):
234
+ x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
235
+ for blk in self.blocks:
236
+ x = blk(x)
237
+
238
+ all_x = x
239
+ output = []
240
+ for x, masks in zip(all_x, masks_list):
241
+ x_norm = self.norm(x)
242
+ output.append(
243
+ {
244
+ "x_norm_clstoken": x_norm[:, 0],
245
+ "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
246
+ "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
247
+ "x_prenorm": x,
248
+ "masks": masks,
249
+ }
250
+ )
251
+ return output
252
+
253
+ def forward_features(self, x, masks=None):
254
+ if isinstance(x, list):
255
+ return self.forward_features_list(x, masks)
256
+
257
+ x = self.prepare_tokens_with_masks(x, masks)
258
+
259
+ for blk in self.blocks:
260
+ x = blk(x)
261
+
262
+ x_norm = self.norm(x)
263
+ return {
264
+ "x_norm_clstoken": x_norm[:, 0],
265
+ "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
266
+ "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
267
+ "x_prenorm": x,
268
+ "masks": masks,
269
+ }
270
+
271
+ def _get_intermediate_layers_not_chunked(self, x, n=1):
272
+ x = self.prepare_tokens_with_masks(x)
273
+ # If n is an int, take the n last blocks. If it's a list, take them
274
+ output, total_block_len = [], len(self.blocks)
275
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
276
+ for i, blk in enumerate(self.blocks):
277
+ x = blk(x)
278
+ if i in blocks_to_take:
279
+ output.append(x)
280
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
281
+ return output
282
+
283
+ def _get_intermediate_layers_chunked(self, x, n=1):
284
+ x = self.prepare_tokens_with_masks(x)
285
+ output, i, total_block_len = [], 0, len(self.blocks[-1])
286
+ # If n is an int, take the n last blocks. If it's a list, take them
287
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
288
+ for block_chunk in self.blocks:
289
+ for blk in block_chunk[i:]: # Passing the nn.Identity()
290
+ x = blk(x)
291
+ if i in blocks_to_take:
292
+ output.append(x)
293
+ i += 1
294
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
295
+ return output
296
+
297
+ def get_intermediate_layers(
298
+ self,
299
+ x: torch.Tensor,
300
+ n: Union[int, Sequence] = 1, # Layers or n last layers to take
301
+ reshape: bool = False,
302
+ return_class_token: bool = False,
303
+ norm=True
304
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
305
+ if self.chunked_blocks:
306
+ outputs = self._get_intermediate_layers_chunked(x, n)
307
+ else:
308
+ outputs = self._get_intermediate_layers_not_chunked(x, n)
309
+ if norm:
310
+ outputs = [self.norm(out) for out in outputs]
311
+ class_tokens = [out[:, 0] for out in outputs]
312
+ outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs]
313
+ if reshape:
314
+ B, _, w, h = x.shape
315
+ outputs = [
316
+ out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
317
+ for out in outputs
318
+ ]
319
+ if return_class_token:
320
+ return tuple(zip(outputs, class_tokens))
321
+ return tuple(outputs)
322
+
323
+ def forward(self, *args, is_training=False, **kwargs):
324
+ ret = self.forward_features(*args, **kwargs)
325
+ if is_training:
326
+ return ret
327
+ else:
328
+ return self.head(ret["x_norm_clstoken"])
329
+
330
+
331
+ def init_weights_vit_timm(module: nn.Module, name: str = ""):
332
+ """ViT weight initialization, original timm impl (for reproducibility)"""
333
+ if isinstance(module, nn.Linear):
334
+ trunc_normal_(module.weight, std=0.02)
335
+ if module.bias is not None:
336
+ nn.init.zeros_(module.bias)
337
+
338
+
339
+ def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
340
+ model = DinoVisionTransformer(
341
+ patch_size=patch_size,
342
+ embed_dim=384,
343
+ depth=12,
344
+ num_heads=6,
345
+ mlp_ratio=4,
346
+ block_fn=partial(Block, attn_class=MemEffAttention),
347
+ num_register_tokens=num_register_tokens,
348
+ **kwargs,
349
+ )
350
+ return model
351
+
352
+
353
+ def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
354
+ model = DinoVisionTransformer(
355
+ patch_size=patch_size,
356
+ embed_dim=768,
357
+ depth=12,
358
+ num_heads=12,
359
+ mlp_ratio=4,
360
+ block_fn=partial(Block, attn_class=MemEffAttention),
361
+ num_register_tokens=num_register_tokens,
362
+ **kwargs,
363
+ )
364
+ return model
365
+
366
+
367
+ def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
368
+ model = DinoVisionTransformer(
369
+ patch_size=patch_size,
370
+ embed_dim=1024,
371
+ depth=24,
372
+ num_heads=16,
373
+ mlp_ratio=4,
374
+ block_fn=partial(Block, attn_class=MemEffAttention),
375
+ num_register_tokens=num_register_tokens,
376
+ **kwargs,
377
+ )
378
+ return model
379
+
380
+
381
+ def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
382
+ """
383
+ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
384
+ """
385
+ model = DinoVisionTransformer(
386
+ patch_size=patch_size,
387
+ embed_dim=1536,
388
+ depth=40,
389
+ num_heads=24,
390
+ mlp_ratio=4,
391
+ block_fn=partial(Block, attn_class=MemEffAttention),
392
+ num_register_tokens=num_register_tokens,
393
+ **kwargs,
394
+ )
395
+ return model
396
+
397
+
398
+ def DINOv2(model_name):
399
+ model_zoo = {
400
+ "vits": vit_small,
401
+ "vitb": vit_base,
402
+ "vitl": vit_large,
403
+ "vitg": vit_giant2
404
+ }
405
+
406
+ return model_zoo[model_name](
407
+ img_size=518,
408
+ patch_size=14,
409
+ init_values=1.0,
410
+ ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
411
+ block_chunks=0,
412
+ num_register_tokens=0,
413
+ interpolate_antialias=False,
414
+ interpolate_offset=0.1
415
+ )
video_depth_anything/dinov2_layers/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from .mlp import Mlp
8
+ from .patch_embed import PatchEmbed
9
+ from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
10
+ from .block import NestedTensorBlock
11
+ from .attention import MemEffAttention
video_depth_anything/dinov2_layers/attention.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
10
+
11
+ import logging
12
+
13
+ from torch import Tensor
14
+ from torch import nn
15
+
16
+
17
+ logger = logging.getLogger("dinov2")
18
+
19
+
20
+ try:
21
+ from xformers.ops import memory_efficient_attention, unbind, fmha
22
+
23
+ XFORMERS_AVAILABLE = True
24
+ except ImportError:
25
+ logger.warning("xFormers not available")
26
+ XFORMERS_AVAILABLE = False
27
+
28
+
29
+ class Attention(nn.Module):
30
+ def __init__(
31
+ self,
32
+ dim: int,
33
+ num_heads: int = 8,
34
+ qkv_bias: bool = False,
35
+ proj_bias: bool = True,
36
+ attn_drop: float = 0.0,
37
+ proj_drop: float = 0.0,
38
+ ) -> None:
39
+ super().__init__()
40
+ self.num_heads = num_heads
41
+ head_dim = dim // num_heads
42
+ self.scale = head_dim**-0.5
43
+
44
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
45
+ self.attn_drop = nn.Dropout(attn_drop)
46
+ self.proj = nn.Linear(dim, dim, bias=proj_bias)
47
+ self.proj_drop = nn.Dropout(proj_drop)
48
+
49
+ def forward(self, x: Tensor) -> Tensor:
50
+ B, N, C = x.shape
51
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
52
+
53
+ q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
54
+ attn = q @ k.transpose(-2, -1)
55
+
56
+ attn = attn.softmax(dim=-1)
57
+ attn = self.attn_drop(attn)
58
+
59
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
60
+ x = self.proj(x)
61
+ x = self.proj_drop(x)
62
+ return x
63
+
64
+
65
+ class MemEffAttention(Attention):
66
+ def forward(self, x: Tensor, attn_bias=None) -> Tensor:
67
+ if not XFORMERS_AVAILABLE:
68
+ assert attn_bias is None, "xFormers is required for nested tensors usage"
69
+ return super().forward(x)
70
+
71
+ B, N, C = x.shape
72
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
73
+
74
+ q, k, v = unbind(qkv, 2)
75
+
76
+ x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
77
+ x = x.reshape([B, N, C])
78
+
79
+ x = self.proj(x)
80
+ x = self.proj_drop(x)
81
+ return x
82
+
83
+
video_depth_anything/dinov2_layers/block.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
10
+
11
+ import logging
12
+ from typing import Callable, List, Any, Tuple, Dict
13
+
14
+ import torch
15
+ from torch import nn, Tensor
16
+
17
+ from .attention import Attention, MemEffAttention
18
+ from .drop_path import DropPath
19
+ from .layer_scale import LayerScale
20
+ from .mlp import Mlp
21
+
22
+
23
+ logger = logging.getLogger("dinov2")
24
+
25
+
26
+ try:
27
+ from xformers.ops import fmha
28
+ from xformers.ops import scaled_index_add, index_select_cat
29
+
30
+ XFORMERS_AVAILABLE = True
31
+ except ImportError:
32
+ logger.warning("xFormers not available")
33
+ XFORMERS_AVAILABLE = False
34
+
35
+
36
+ class Block(nn.Module):
37
+ def __init__(
38
+ self,
39
+ dim: int,
40
+ num_heads: int,
41
+ mlp_ratio: float = 4.0,
42
+ qkv_bias: bool = False,
43
+ proj_bias: bool = True,
44
+ ffn_bias: bool = True,
45
+ drop: float = 0.0,
46
+ attn_drop: float = 0.0,
47
+ init_values=None,
48
+ drop_path: float = 0.0,
49
+ act_layer: Callable[..., nn.Module] = nn.GELU,
50
+ norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
51
+ attn_class: Callable[..., nn.Module] = Attention,
52
+ ffn_layer: Callable[..., nn.Module] = Mlp,
53
+ ) -> None:
54
+ super().__init__()
55
+ # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
56
+ self.norm1 = norm_layer(dim)
57
+ self.attn = attn_class(
58
+ dim,
59
+ num_heads=num_heads,
60
+ qkv_bias=qkv_bias,
61
+ proj_bias=proj_bias,
62
+ attn_drop=attn_drop,
63
+ proj_drop=drop,
64
+ )
65
+ self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
66
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
67
+
68
+ self.norm2 = norm_layer(dim)
69
+ mlp_hidden_dim = int(dim * mlp_ratio)
70
+ self.mlp = ffn_layer(
71
+ in_features=dim,
72
+ hidden_features=mlp_hidden_dim,
73
+ act_layer=act_layer,
74
+ drop=drop,
75
+ bias=ffn_bias,
76
+ )
77
+ self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
78
+ self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
79
+
80
+ self.sample_drop_ratio = drop_path
81
+
82
+ def forward(self, x: Tensor) -> Tensor:
83
+ def attn_residual_func(x: Tensor) -> Tensor:
84
+ return self.ls1(self.attn(self.norm1(x)))
85
+
86
+ def ffn_residual_func(x: Tensor) -> Tensor:
87
+ return self.ls2(self.mlp(self.norm2(x)))
88
+
89
+ if self.training and self.sample_drop_ratio > 0.1:
90
+ # the overhead is compensated only for a drop path rate larger than 0.1
91
+ x = drop_add_residual_stochastic_depth(
92
+ x,
93
+ residual_func=attn_residual_func,
94
+ sample_drop_ratio=self.sample_drop_ratio,
95
+ )
96
+ x = drop_add_residual_stochastic_depth(
97
+ x,
98
+ residual_func=ffn_residual_func,
99
+ sample_drop_ratio=self.sample_drop_ratio,
100
+ )
101
+ elif self.training and self.sample_drop_ratio > 0.0:
102
+ x = x + self.drop_path1(attn_residual_func(x))
103
+ x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
104
+ else:
105
+ x = x + attn_residual_func(x)
106
+ x = x + ffn_residual_func(x)
107
+ return x
108
+
109
+
110
+ def drop_add_residual_stochastic_depth(
111
+ x: Tensor,
112
+ residual_func: Callable[[Tensor], Tensor],
113
+ sample_drop_ratio: float = 0.0,
114
+ ) -> Tensor:
115
+ # 1) extract subset using permutation
116
+ b, n, d = x.shape
117
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
118
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
119
+ x_subset = x[brange]
120
+
121
+ # 2) apply residual_func to get residual
122
+ residual = residual_func(x_subset)
123
+
124
+ x_flat = x.flatten(1)
125
+ residual = residual.flatten(1)
126
+
127
+ residual_scale_factor = b / sample_subset_size
128
+
129
+ # 3) add the residual
130
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
131
+ return x_plus_residual.view_as(x)
132
+
133
+
134
+ def get_branges_scales(x, sample_drop_ratio=0.0):
135
+ b, n, d = x.shape
136
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
137
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
138
+ residual_scale_factor = b / sample_subset_size
139
+ return brange, residual_scale_factor
140
+
141
+
142
+ def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
143
+ if scaling_vector is None:
144
+ x_flat = x.flatten(1)
145
+ residual = residual.flatten(1)
146
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
147
+ else:
148
+ x_plus_residual = scaled_index_add(
149
+ x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
150
+ )
151
+ return x_plus_residual
152
+
153
+
154
+ attn_bias_cache: Dict[Tuple, Any] = {}
155
+
156
+
157
+ def get_attn_bias_and_cat(x_list, branges=None):
158
+ """
159
+ this will perform the index select, cat the tensors, and provide the attn_bias from cache
160
+ """
161
+ batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
162
+ all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
163
+ if all_shapes not in attn_bias_cache.keys():
164
+ seqlens = []
165
+ for b, x in zip(batch_sizes, x_list):
166
+ for _ in range(b):
167
+ seqlens.append(x.shape[1])
168
+ attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
169
+ attn_bias._batch_sizes = batch_sizes
170
+ attn_bias_cache[all_shapes] = attn_bias
171
+
172
+ if branges is not None:
173
+ cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
174
+ else:
175
+ tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
176
+ cat_tensors = torch.cat(tensors_bs1, dim=1)
177
+
178
+ return attn_bias_cache[all_shapes], cat_tensors
179
+
180
+
181
+ def drop_add_residual_stochastic_depth_list(
182
+ x_list: List[Tensor],
183
+ residual_func: Callable[[Tensor, Any], Tensor],
184
+ sample_drop_ratio: float = 0.0,
185
+ scaling_vector=None,
186
+ ) -> Tensor:
187
+ # 1) generate random set of indices for dropping samples in the batch
188
+ branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
189
+ branges = [s[0] for s in branges_scales]
190
+ residual_scale_factors = [s[1] for s in branges_scales]
191
+
192
+ # 2) get attention bias and index+concat the tensors
193
+ attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
194
+
195
+ # 3) apply residual_func to get residual, and split the result
196
+ residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
197
+
198
+ outputs = []
199
+ for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
200
+ outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
201
+ return outputs
202
+
203
+
204
+ class NestedTensorBlock(Block):
205
+ def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
206
+ """
207
+ x_list contains a list of tensors to nest together and run
208
+ """
209
+ assert isinstance(self.attn, MemEffAttention)
210
+
211
+ if self.training and self.sample_drop_ratio > 0.0:
212
+
213
+ def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
214
+ return self.attn(self.norm1(x), attn_bias=attn_bias)
215
+
216
+ def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
217
+ return self.mlp(self.norm2(x))
218
+
219
+ x_list = drop_add_residual_stochastic_depth_list(
220
+ x_list,
221
+ residual_func=attn_residual_func,
222
+ sample_drop_ratio=self.sample_drop_ratio,
223
+ scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
224
+ )
225
+ x_list = drop_add_residual_stochastic_depth_list(
226
+ x_list,
227
+ residual_func=ffn_residual_func,
228
+ sample_drop_ratio=self.sample_drop_ratio,
229
+ scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
230
+ )
231
+ return x_list
232
+ else:
233
+
234
+ def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
235
+ return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
236
+
237
+ def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
238
+ return self.ls2(self.mlp(self.norm2(x)))
239
+
240
+ attn_bias, x = get_attn_bias_and_cat(x_list)
241
+ x = x + attn_residual_func(x, attn_bias=attn_bias)
242
+ x = x + ffn_residual_func(x)
243
+ return attn_bias.split(x)
244
+
245
+ def forward(self, x_or_x_list):
246
+ if isinstance(x_or_x_list, Tensor):
247
+ return super().forward(x_or_x_list)
248
+ elif isinstance(x_or_x_list, list):
249
+ assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
250
+ return self.forward_nested(x_or_x_list)
251
+ else:
252
+ raise AssertionError
video_depth_anything/dinov2_layers/drop_path.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
10
+
11
+
12
+ from torch import nn
13
+
14
+
15
+ def drop_path(x, drop_prob: float = 0.0, training: bool = False):
16
+ if drop_prob == 0.0 or not training:
17
+ return x
18
+ keep_prob = 1 - drop_prob
19
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
20
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
21
+ if keep_prob > 0.0:
22
+ random_tensor.div_(keep_prob)
23
+ output = x * random_tensor
24
+ return output
25
+
26
+
27
+ class DropPath(nn.Module):
28
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
29
+
30
+ def __init__(self, drop_prob=None):
31
+ super(DropPath, self).__init__()
32
+ self.drop_prob = drop_prob
33
+
34
+ def forward(self, x):
35
+ return drop_path(x, self.drop_prob, self.training)
video_depth_anything/dinov2_layers/layer_scale.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
8
+
9
+ from typing import Union
10
+
11
+ import torch
12
+ from torch import Tensor
13
+ from torch import nn
14
+
15
+
16
+ class LayerScale(nn.Module):
17
+ def __init__(
18
+ self,
19
+ dim: int,
20
+ init_values: Union[float, Tensor] = 1e-5,
21
+ inplace: bool = False,
22
+ ) -> None:
23
+ super().__init__()
24
+ self.inplace = inplace
25
+ self.gamma = nn.Parameter(init_values * torch.ones(dim))
26
+
27
+ def forward(self, x: Tensor) -> Tensor:
28
+ return x.mul_(self.gamma) if self.inplace else x * self.gamma
video_depth_anything/dinov2_layers/mlp.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
10
+
11
+
12
+ from typing import Callable, Optional
13
+
14
+ from torch import Tensor, nn
15
+
16
+
17
+ class Mlp(nn.Module):
18
+ def __init__(
19
+ self,
20
+ in_features: int,
21
+ hidden_features: Optional[int] = None,
22
+ out_features: Optional[int] = None,
23
+ act_layer: Callable[..., nn.Module] = nn.GELU,
24
+ drop: float = 0.0,
25
+ bias: bool = True,
26
+ ) -> None:
27
+ super().__init__()
28
+ out_features = out_features or in_features
29
+ hidden_features = hidden_features or in_features
30
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
31
+ self.act = act_layer()
32
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
33
+ self.drop = nn.Dropout(drop)
34
+
35
+ def forward(self, x: Tensor) -> Tensor:
36
+ x = self.fc1(x)
37
+ x = self.act(x)
38
+ x = self.drop(x)
39
+ x = self.fc2(x)
40
+ x = self.drop(x)
41
+ return x
video_depth_anything/dinov2_layers/patch_embed.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # References:
8
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
9
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
10
+
11
+ from typing import Callable, Optional, Tuple, Union
12
+
13
+ from torch import Tensor
14
+ import torch.nn as nn
15
+
16
+
17
+ def make_2tuple(x):
18
+ if isinstance(x, tuple):
19
+ assert len(x) == 2
20
+ return x
21
+
22
+ assert isinstance(x, int)
23
+ return (x, x)
24
+
25
+
26
+ class PatchEmbed(nn.Module):
27
+ """
28
+ 2D image to patch embedding: (B,C,H,W) -> (B,N,D)
29
+
30
+ Args:
31
+ img_size: Image size.
32
+ patch_size: Patch token size.
33
+ in_chans: Number of input image channels.
34
+ embed_dim: Number of linear projection output channels.
35
+ norm_layer: Normalization layer.
36
+ """
37
+
38
+ def __init__(
39
+ self,
40
+ img_size: Union[int, Tuple[int, int]] = 224,
41
+ patch_size: Union[int, Tuple[int, int]] = 16,
42
+ in_chans: int = 3,
43
+ embed_dim: int = 768,
44
+ norm_layer: Optional[Callable] = None,
45
+ flatten_embedding: bool = True,
46
+ ) -> None:
47
+ super().__init__()
48
+
49
+ image_HW = make_2tuple(img_size)
50
+ patch_HW = make_2tuple(patch_size)
51
+ patch_grid_size = (
52
+ image_HW[0] // patch_HW[0],
53
+ image_HW[1] // patch_HW[1],
54
+ )
55
+
56
+ self.img_size = image_HW
57
+ self.patch_size = patch_HW
58
+ self.patches_resolution = patch_grid_size
59
+ self.num_patches = patch_grid_size[0] * patch_grid_size[1]
60
+
61
+ self.in_chans = in_chans
62
+ self.embed_dim = embed_dim
63
+
64
+ self.flatten_embedding = flatten_embedding
65
+
66
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
67
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
68
+
69
+ def forward(self, x: Tensor) -> Tensor:
70
+ _, _, H, W = x.shape
71
+ patch_H, patch_W = self.patch_size
72
+
73
+ assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
74
+ assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
75
+
76
+ x = self.proj(x) # B C H W
77
+ H, W = x.size(2), x.size(3)
78
+ x = x.flatten(2).transpose(1, 2) # B HW C
79
+ x = self.norm(x)
80
+ if not self.flatten_embedding:
81
+ x = x.reshape(-1, H, W, self.embed_dim) # B H W C
82
+ return x
83
+
84
+ def flops(self) -> float:
85
+ Ho, Wo = self.patches_resolution
86
+ flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
87
+ if self.norm is not None:
88
+ flops += Ho * Wo * self.embed_dim
89
+ return flops
video_depth_anything/dinov2_layers/swiglu_ffn.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Callable, Optional
8
+
9
+ from torch import Tensor, nn
10
+ import torch.nn.functional as F
11
+
12
+
13
+ class SwiGLUFFN(nn.Module):
14
+ def __init__(
15
+ self,
16
+ in_features: int,
17
+ hidden_features: Optional[int] = None,
18
+ out_features: Optional[int] = None,
19
+ act_layer: Callable[..., nn.Module] = None,
20
+ drop: float = 0.0,
21
+ bias: bool = True,
22
+ ) -> None:
23
+ super().__init__()
24
+ out_features = out_features or in_features
25
+ hidden_features = hidden_features or in_features
26
+ self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
27
+ self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
28
+
29
+ def forward(self, x: Tensor) -> Tensor:
30
+ x12 = self.w12(x)
31
+ x1, x2 = x12.chunk(2, dim=-1)
32
+ hidden = F.silu(x1) * x2
33
+ return self.w3(hidden)
34
+
35
+
36
+ try:
37
+ from xformers.ops import SwiGLU
38
+
39
+ XFORMERS_AVAILABLE = True
40
+ except ImportError:
41
+ SwiGLU = SwiGLUFFN
42
+ XFORMERS_AVAILABLE = False
43
+
44
+
45
+ class SwiGLUFFNFused(SwiGLU):
46
+ def __init__(
47
+ self,
48
+ in_features: int,
49
+ hidden_features: Optional[int] = None,
50
+ out_features: Optional[int] = None,
51
+ act_layer: Callable[..., nn.Module] = None,
52
+ drop: float = 0.0,
53
+ bias: bool = True,
54
+ ) -> None:
55
+ out_features = out_features or in_features
56
+ hidden_features = hidden_features or in_features
57
+ hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
58
+ super().__init__(
59
+ in_features=in_features,
60
+ hidden_features=hidden_features,
61
+ out_features=out_features,
62
+ bias=bias,
63
+ )
video_depth_anything/dpt.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (2025) Bytedance Ltd. and/or its affiliates
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ import torch.nn as nn
16
+ import torch.nn.functional as F
17
+
18
+ from .util.blocks import FeatureFusionBlock, _make_scratch
19
+
20
+
21
+ def _make_fusion_block(features, use_bn, size=None):
22
+ return FeatureFusionBlock(
23
+ features,
24
+ nn.ReLU(False),
25
+ deconv=False,
26
+ bn=use_bn,
27
+ expand=False,
28
+ align_corners=True,
29
+ size=size,
30
+ )
31
+
32
+
33
+ class ConvBlock(nn.Module):
34
+ def __init__(self, in_feature, out_feature):
35
+ super().__init__()
36
+
37
+ self.conv_block = nn.Sequential(
38
+ nn.Conv2d(in_feature, out_feature, kernel_size=3, stride=1, padding=1),
39
+ nn.BatchNorm2d(out_feature),
40
+ nn.ReLU(True)
41
+ )
42
+
43
+ def forward(self, x):
44
+ return self.conv_block(x)
45
+
46
+
47
+ class DPTHead(nn.Module):
48
+ def __init__(
49
+ self,
50
+ in_channels,
51
+ features=256,
52
+ use_bn=False,
53
+ out_channels=[256, 512, 1024, 1024],
54
+ use_clstoken=False
55
+ ):
56
+ super(DPTHead, self).__init__()
57
+
58
+ self.use_clstoken = use_clstoken
59
+
60
+ self.projects = nn.ModuleList([
61
+ nn.Conv2d(
62
+ in_channels=in_channels,
63
+ out_channels=out_channel,
64
+ kernel_size=1,
65
+ stride=1,
66
+ padding=0,
67
+ ) for out_channel in out_channels
68
+ ])
69
+
70
+ self.resize_layers = nn.ModuleList([
71
+ nn.ConvTranspose2d(
72
+ in_channels=out_channels[0],
73
+ out_channels=out_channels[0],
74
+ kernel_size=4,
75
+ stride=4,
76
+ padding=0),
77
+ nn.ConvTranspose2d(
78
+ in_channels=out_channels[1],
79
+ out_channels=out_channels[1],
80
+ kernel_size=2,
81
+ stride=2,
82
+ padding=0),
83
+ nn.Identity(),
84
+ nn.Conv2d(
85
+ in_channels=out_channels[3],
86
+ out_channels=out_channels[3],
87
+ kernel_size=3,
88
+ stride=2,
89
+ padding=1)
90
+ ])
91
+
92
+ if use_clstoken:
93
+ self.readout_projects = nn.ModuleList()
94
+ for _ in range(len(self.projects)):
95
+ self.readout_projects.append(
96
+ nn.Sequential(
97
+ nn.Linear(2 * in_channels, in_channels),
98
+ nn.GELU()))
99
+
100
+ self.scratch = _make_scratch(
101
+ out_channels,
102
+ features,
103
+ groups=1,
104
+ expand=False,
105
+ )
106
+
107
+ self.scratch.stem_transpose = None
108
+
109
+ self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
110
+ self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
111
+ self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
112
+ self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
113
+
114
+ head_features_1 = features
115
+ head_features_2 = 32
116
+
117
+ self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
118
+ self.scratch.output_conv2 = nn.Sequential(
119
+ nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
120
+ nn.ReLU(True),
121
+ nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
122
+ nn.ReLU(True),
123
+ nn.Identity(),
124
+ )
125
+
126
+ def forward(self, out_features, patch_h, patch_w):
127
+ out = []
128
+ for i, x in enumerate(out_features):
129
+ if self.use_clstoken:
130
+ x, cls_token = x[0], x[1]
131
+ readout = cls_token.unsqueeze(1).expand_as(x)
132
+ x = self.readout_projects[i](torch.cat((x, readout), -1))
133
+ else:
134
+ x = x[0]
135
+
136
+ x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
137
+
138
+ x = self.projects[i](x)
139
+ x = self.resize_layers[i](x)
140
+
141
+ out.append(x)
142
+
143
+ layer_1, layer_2, layer_3, layer_4 = out
144
+
145
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
146
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
147
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
148
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
149
+
150
+ path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
151
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
152
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
153
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
154
+
155
+ out = self.scratch.output_conv1(path_1)
156
+ out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
157
+ out = self.scratch.output_conv2(out)
158
+
159
+ return out
160
+
video_depth_anything/dpt_temporal.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (2025) Bytedance Ltd. and/or its affiliates
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ import torch.nn.functional as F
16
+ import torch.nn as nn
17
+ from .dpt import DPTHead
18
+ from .motion_module.motion_module import TemporalModule
19
+ from easydict import EasyDict
20
+
21
+
22
+ class DPTHeadTemporal(DPTHead):
23
+ def __init__(self,
24
+ in_channels,
25
+ features=256,
26
+ use_bn=False,
27
+ out_channels=[256, 512, 1024, 1024],
28
+ use_clstoken=False,
29
+ num_frames=32,
30
+ pe='ape'
31
+ ):
32
+ super().__init__(in_channels, features, use_bn, out_channels, use_clstoken)
33
+
34
+ assert num_frames > 0
35
+ motion_module_kwargs = EasyDict(num_attention_heads = 8,
36
+ num_transformer_block = 1,
37
+ num_attention_blocks = 2,
38
+ temporal_max_len = num_frames,
39
+ zero_initialize = True,
40
+ pos_embedding_type = pe)
41
+
42
+ self.motion_modules = nn.ModuleList([
43
+ TemporalModule(in_channels=out_channels[2],
44
+ **motion_module_kwargs),
45
+ TemporalModule(in_channels=out_channels[3],
46
+ **motion_module_kwargs),
47
+ TemporalModule(in_channels=features,
48
+ **motion_module_kwargs),
49
+ TemporalModule(in_channels=features,
50
+ **motion_module_kwargs)
51
+ ])
52
+
53
+ def forward(self, out_features, patch_h, patch_w, frame_length):
54
+ out = []
55
+ for i, x in enumerate(out_features):
56
+ if self.use_clstoken:
57
+ x, cls_token = x[0], x[1]
58
+ readout = cls_token.unsqueeze(1).expand_as(x)
59
+ x = self.readout_projects[i](torch.cat((x, readout), -1))
60
+ else:
61
+ x = x[0]
62
+
63
+ x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)).contiguous()
64
+
65
+ B, T = x.shape[0] // frame_length, frame_length
66
+ x = self.projects[i](x)
67
+ x = self.resize_layers[i](x)
68
+
69
+ out.append(x)
70
+
71
+ layer_1, layer_2, layer_3, layer_4 = out
72
+
73
+ B, T = layer_1.shape[0] // frame_length, frame_length
74
+
75
+ layer_3 = self.motion_modules[0](layer_3.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1)
76
+ layer_4 = self.motion_modules[1](layer_4.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1)
77
+
78
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
79
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
80
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
81
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
82
+
83
+ path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
84
+ path_4 = self.motion_modules[2](path_4.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1)
85
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
86
+ path_3 = self.motion_modules[3](path_3.unflatten(0, (B, T)).permute(0, 2, 1, 3, 4), None, None).permute(0, 2, 1, 3, 4).flatten(0, 1)
87
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
88
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
89
+
90
+ out = self.scratch.output_conv1(path_1)
91
+ out = F.interpolate(
92
+ out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True
93
+ )
94
+ out = self.scratch.output_conv2(out)
95
+
96
+ return out
video_depth_anything/motion_module/attention.py ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Optional, Tuple
15
+
16
+ import torch
17
+ import torch.nn.functional as F
18
+ from torch import nn
19
+
20
+ import xformers
21
+ import xformers.ops
22
+
23
+
24
+ class CrossAttention(nn.Module):
25
+ r"""
26
+ A cross attention layer.
27
+
28
+ Parameters:
29
+ query_dim (`int`): The number of channels in the query.
30
+ cross_attention_dim (`int`, *optional*):
31
+ The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
32
+ heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
33
+ dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
34
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
35
+ bias (`bool`, *optional*, defaults to False):
36
+ Set to `True` for the query, key, and value linear layers to contain a bias parameter.
37
+ """
38
+
39
+ def __init__(
40
+ self,
41
+ query_dim: int,
42
+ cross_attention_dim: Optional[int] = None,
43
+ heads: int = 8,
44
+ dim_head: int = 64,
45
+ dropout: float = 0.0,
46
+ bias=False,
47
+ upcast_attention: bool = False,
48
+ upcast_softmax: bool = False,
49
+ added_kv_proj_dim: Optional[int] = None,
50
+ norm_num_groups: Optional[int] = None,
51
+ ):
52
+ super().__init__()
53
+ inner_dim = dim_head * heads
54
+ cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
55
+ self.upcast_attention = upcast_attention
56
+ self.upcast_softmax = upcast_softmax
57
+ self.upcast_efficient_attention = False
58
+
59
+ self.scale = dim_head**-0.5
60
+
61
+ self.heads = heads
62
+ # for slice_size > 0 the attention score computation
63
+ # is split across the batch axis to save memory
64
+ # You can set slice_size with `set_attention_slice`
65
+ self.sliceable_head_dim = heads
66
+ self._slice_size = None
67
+ self._use_memory_efficient_attention_xformers = False
68
+ self.added_kv_proj_dim = added_kv_proj_dim
69
+
70
+ if norm_num_groups is not None:
71
+ self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
72
+ else:
73
+ self.group_norm = None
74
+
75
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
76
+ self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
77
+ self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
78
+
79
+ if self.added_kv_proj_dim is not None:
80
+ self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
81
+ self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
82
+
83
+ self.to_out = nn.ModuleList([])
84
+ self.to_out.append(nn.Linear(inner_dim, query_dim))
85
+ self.to_out.append(nn.Dropout(dropout))
86
+
87
+ def reshape_heads_to_batch_dim(self, tensor):
88
+ batch_size, seq_len, dim = tensor.shape
89
+ head_size = self.heads
90
+ tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size).contiguous()
91
+ tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size).contiguous()
92
+ return tensor
93
+
94
+ def reshape_heads_to_4d(self, tensor):
95
+ batch_size, seq_len, dim = tensor.shape
96
+ head_size = self.heads
97
+ tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size).contiguous()
98
+ return tensor
99
+
100
+ def reshape_batch_dim_to_heads(self, tensor):
101
+ batch_size, seq_len, dim = tensor.shape
102
+ head_size = self.heads
103
+ tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim).contiguous()
104
+ tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size).contiguous()
105
+ return tensor
106
+
107
+ def reshape_4d_to_heads(self, tensor):
108
+ batch_size, seq_len, head_size, dim = tensor.shape
109
+ head_size = self.heads
110
+ tensor = tensor.reshape(batch_size, seq_len, dim * head_size).contiguous()
111
+ return tensor
112
+
113
+ def set_attention_slice(self, slice_size):
114
+ if slice_size is not None and slice_size > self.sliceable_head_dim:
115
+ raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
116
+
117
+ self._slice_size = slice_size
118
+
119
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
120
+ batch_size, sequence_length, _ = hidden_states.shape
121
+
122
+ encoder_hidden_states = encoder_hidden_states
123
+
124
+ if self.group_norm is not None:
125
+ hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
126
+
127
+ query = self.to_q(hidden_states)
128
+ dim = query.shape[-1]
129
+ query = self.reshape_heads_to_batch_dim(query)
130
+
131
+ if self.added_kv_proj_dim is not None:
132
+ key = self.to_k(hidden_states)
133
+ value = self.to_v(hidden_states)
134
+ encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
135
+ encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)
136
+
137
+ key = self.reshape_heads_to_batch_dim(key)
138
+ value = self.reshape_heads_to_batch_dim(value)
139
+ encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj)
140
+ encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj)
141
+
142
+ key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
143
+ value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)
144
+ else:
145
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
146
+ key = self.to_k(encoder_hidden_states)
147
+ value = self.to_v(encoder_hidden_states)
148
+
149
+ key = self.reshape_heads_to_batch_dim(key)
150
+ value = self.reshape_heads_to_batch_dim(value)
151
+
152
+ if attention_mask is not None:
153
+ if attention_mask.shape[-1] != query.shape[1]:
154
+ target_length = query.shape[1]
155
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
156
+ attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
157
+
158
+ # attention, what we cannot get enough of
159
+ if self._use_memory_efficient_attention_xformers:
160
+ hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
161
+ # Some versions of xformers return output in fp32, cast it back to the dtype of the input
162
+ hidden_states = hidden_states.to(query.dtype)
163
+ else:
164
+ if self._slice_size is None or query.shape[0] // self._slice_size == 1:
165
+ hidden_states = self._attention(query, key, value, attention_mask)
166
+ else:
167
+ hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
168
+
169
+ # linear proj
170
+ hidden_states = self.to_out[0](hidden_states)
171
+
172
+ # dropout
173
+ hidden_states = self.to_out[1](hidden_states)
174
+ return hidden_states
175
+
176
+ def _attention(self, query, key, value, attention_mask=None):
177
+ if self.upcast_attention:
178
+ query = query.float()
179
+ key = key.float()
180
+
181
+ attention_scores = torch.baddbmm(
182
+ torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
183
+ query,
184
+ key.transpose(-1, -2),
185
+ beta=0,
186
+ alpha=self.scale,
187
+ )
188
+
189
+ if attention_mask is not None:
190
+ attention_scores = attention_scores + attention_mask
191
+
192
+ if self.upcast_softmax:
193
+ attention_scores = attention_scores.float()
194
+
195
+ attention_probs = attention_scores.softmax(dim=-1)
196
+
197
+ # cast back to the original dtype
198
+ attention_probs = attention_probs.to(value.dtype)
199
+
200
+ # compute attention output
201
+ hidden_states = torch.bmm(attention_probs, value)
202
+
203
+ # reshape hidden_states
204
+ hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
205
+ return hidden_states
206
+
207
+ def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask):
208
+ batch_size_attention = query.shape[0]
209
+ hidden_states = torch.zeros(
210
+ (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
211
+ )
212
+ slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
213
+ for i in range(hidden_states.shape[0] // slice_size):
214
+ start_idx = i * slice_size
215
+ end_idx = (i + 1) * slice_size
216
+
217
+ query_slice = query[start_idx:end_idx]
218
+ key_slice = key[start_idx:end_idx]
219
+
220
+ if self.upcast_attention:
221
+ query_slice = query_slice.float()
222
+ key_slice = key_slice.float()
223
+
224
+ attn_slice = torch.baddbmm(
225
+ torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
226
+ query_slice,
227
+ key_slice.transpose(-1, -2),
228
+ beta=0,
229
+ alpha=self.scale,
230
+ )
231
+
232
+ if attention_mask is not None:
233
+ attn_slice = attn_slice + attention_mask[start_idx:end_idx]
234
+
235
+ if self.upcast_softmax:
236
+ attn_slice = attn_slice.float()
237
+
238
+ attn_slice = attn_slice.softmax(dim=-1)
239
+
240
+ # cast back to the original dtype
241
+ attn_slice = attn_slice.to(value.dtype)
242
+ attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
243
+
244
+ hidden_states[start_idx:end_idx] = attn_slice
245
+
246
+ # reshape hidden_states
247
+ hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
248
+ return hidden_states
249
+
250
+ def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
251
+ if self.upcast_efficient_attention:
252
+ org_dtype = query.dtype
253
+ query = query.float()
254
+ key = key.float()
255
+ value = value.float()
256
+ if attention_mask is not None:
257
+ attention_mask = attention_mask.float()
258
+ hidden_states = self._memory_efficient_attention_split(query, key, value, attention_mask)
259
+
260
+ if self.upcast_efficient_attention:
261
+ hidden_states = hidden_states.to(org_dtype)
262
+
263
+ hidden_states = self.reshape_4d_to_heads(hidden_states)
264
+ return hidden_states
265
+
266
+ # print("Errror: no xformers")
267
+ # raise NotImplementedError
268
+
269
+ def _memory_efficient_attention_split(self, query, key, value, attention_mask):
270
+ batch_size = query.shape[0]
271
+ max_batch_size = 65535
272
+ num_batches = (batch_size + max_batch_size - 1) // max_batch_size
273
+ results = []
274
+ for i in range(num_batches):
275
+ start_idx = i * max_batch_size
276
+ end_idx = min((i + 1) * max_batch_size, batch_size)
277
+ query_batch = query[start_idx:end_idx]
278
+ key_batch = key[start_idx:end_idx]
279
+ value_batch = value[start_idx:end_idx]
280
+ if attention_mask is not None:
281
+ attention_mask_batch = attention_mask[start_idx:end_idx]
282
+ else:
283
+ attention_mask_batch = None
284
+ result = xformers.ops.memory_efficient_attention(query_batch, key_batch, value_batch, attn_bias=attention_mask_batch)
285
+ results.append(result)
286
+ full_result = torch.cat(results, dim=0)
287
+ return full_result
288
+
289
+
290
+ class FeedForward(nn.Module):
291
+ r"""
292
+ A feed-forward layer.
293
+
294
+ Parameters:
295
+ dim (`int`): The number of channels in the input.
296
+ dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
297
+ mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
298
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
299
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
300
+ """
301
+
302
+ def __init__(
303
+ self,
304
+ dim: int,
305
+ dim_out: Optional[int] = None,
306
+ mult: int = 4,
307
+ dropout: float = 0.0,
308
+ activation_fn: str = "geglu",
309
+ ):
310
+ super().__init__()
311
+ inner_dim = int(dim * mult)
312
+ dim_out = dim_out if dim_out is not None else dim
313
+
314
+ if activation_fn == "gelu":
315
+ act_fn = GELU(dim, inner_dim)
316
+ elif activation_fn == "geglu":
317
+ act_fn = GEGLU(dim, inner_dim)
318
+ elif activation_fn == "geglu-approximate":
319
+ act_fn = ApproximateGELU(dim, inner_dim)
320
+
321
+ self.net = nn.ModuleList([])
322
+ # project in
323
+ self.net.append(act_fn)
324
+ # project dropout
325
+ self.net.append(nn.Dropout(dropout))
326
+ # project out
327
+ self.net.append(nn.Linear(inner_dim, dim_out))
328
+
329
+ def forward(self, hidden_states):
330
+ for module in self.net:
331
+ hidden_states = module(hidden_states)
332
+ return hidden_states
333
+
334
+
335
+ class GELU(nn.Module):
336
+ r"""
337
+ GELU activation function
338
+ """
339
+
340
+ def __init__(self, dim_in: int, dim_out: int):
341
+ super().__init__()
342
+ self.proj = nn.Linear(dim_in, dim_out)
343
+
344
+ def gelu(self, gate):
345
+ if gate.device.type != "mps":
346
+ return F.gelu(gate)
347
+ # mps: gelu is not implemented for float16
348
+ return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
349
+
350
+ def forward(self, hidden_states):
351
+ hidden_states = self.proj(hidden_states)
352
+ hidden_states = self.gelu(hidden_states)
353
+ return hidden_states
354
+
355
+
356
+ # feedforward
357
+ class GEGLU(nn.Module):
358
+ r"""
359
+ A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
360
+
361
+ Parameters:
362
+ dim_in (`int`): The number of channels in the input.
363
+ dim_out (`int`): The number of channels in the output.
364
+ """
365
+
366
+ def __init__(self, dim_in: int, dim_out: int):
367
+ super().__init__()
368
+ self.proj = nn.Linear(dim_in, dim_out * 2)
369
+
370
+ def gelu(self, gate):
371
+ if gate.device.type != "mps":
372
+ return F.gelu(gate)
373
+ # mps: gelu is not implemented for float16
374
+ return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
375
+
376
+ def forward(self, hidden_states):
377
+ hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
378
+ return hidden_states * self.gelu(gate)
379
+
380
+
381
+ class ApproximateGELU(nn.Module):
382
+ """
383
+ The approximate form of Gaussian Error Linear Unit (GELU)
384
+
385
+ For more details, see section 2: https://arxiv.org/abs/1606.08415
386
+ """
387
+
388
+ def __init__(self, dim_in: int, dim_out: int):
389
+ super().__init__()
390
+ self.proj = nn.Linear(dim_in, dim_out)
391
+
392
+ def forward(self, x):
393
+ x = self.proj(x)
394
+ return x * torch.sigmoid(1.702 * x)
395
+
396
+
397
+ def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
398
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
399
+ t = torch.arange(end, device=freqs.device, dtype=torch.float32)
400
+ freqs = torch.outer(t, freqs)
401
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
402
+ return freqs_cis
403
+
404
+
405
+ def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
406
+ ndim = x.ndim
407
+ assert 0 <= 1 < ndim
408
+ assert freqs_cis.shape == (x.shape[1], x.shape[-1])
409
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
410
+ return freqs_cis.view(*shape)
411
+
412
+
413
+ def apply_rotary_emb(
414
+ xq: torch.Tensor,
415
+ xk: torch.Tensor,
416
+ freqs_cis: torch.Tensor,
417
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
418
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2).contiguous())
419
+ xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2).contiguous())
420
+ freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
421
+ xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(2)
422
+ xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(2)
423
+ return xq_out.type_as(xq), xk_out.type_as(xk)
video_depth_anything/motion_module/motion_module.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is originally from AnimateDiff/animatediff/models/motion_module.py at main · guoyww/AnimateDiff
2
+ # SPDX-License-Identifier: Apache-2.0 license
3
+ #
4
+ # This file may have been modified by ByteDance Ltd. and/or its affiliates on [date of modification]
5
+ # Original file was released under [ Apache-2.0 license], with the full license text available at [https://github.com/guoyww/AnimateDiff?tab=Apache-2.0-1-ov-file#readme].
6
+ import torch
7
+ import torch.nn.functional as F
8
+ from torch import nn
9
+
10
+ from .attention import CrossAttention, FeedForward, apply_rotary_emb, precompute_freqs_cis
11
+
12
+ from einops import rearrange, repeat
13
+ import math
14
+
15
+
16
+ def zero_module(module):
17
+ # Zero out the parameters of a module and return it.
18
+ for p in module.parameters():
19
+ p.detach().zero_()
20
+ return module
21
+
22
+
23
+ class TemporalModule(nn.Module):
24
+ def __init__(
25
+ self,
26
+ in_channels,
27
+ num_attention_heads = 8,
28
+ num_transformer_block = 2,
29
+ num_attention_blocks = 2,
30
+ norm_num_groups = 32,
31
+ temporal_max_len = 32,
32
+ zero_initialize = True,
33
+ pos_embedding_type = "ape",
34
+ ):
35
+ super().__init__()
36
+
37
+ self.temporal_transformer = TemporalTransformer3DModel(
38
+ in_channels=in_channels,
39
+ num_attention_heads=num_attention_heads,
40
+ attention_head_dim=in_channels // num_attention_heads,
41
+ num_layers=num_transformer_block,
42
+ num_attention_blocks=num_attention_blocks,
43
+ norm_num_groups=norm_num_groups,
44
+ temporal_max_len=temporal_max_len,
45
+ pos_embedding_type=pos_embedding_type,
46
+ )
47
+
48
+ if zero_initialize:
49
+ self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
50
+
51
+ def forward(self, input_tensor, encoder_hidden_states, attention_mask=None):
52
+ hidden_states = input_tensor
53
+ hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask)
54
+
55
+ output = hidden_states
56
+ return output
57
+
58
+
59
+ class TemporalTransformer3DModel(nn.Module):
60
+ def __init__(
61
+ self,
62
+ in_channels,
63
+ num_attention_heads,
64
+ attention_head_dim,
65
+ num_layers,
66
+ num_attention_blocks = 2,
67
+ norm_num_groups = 32,
68
+ temporal_max_len = 32,
69
+ pos_embedding_type = "ape",
70
+ ):
71
+ super().__init__()
72
+
73
+ inner_dim = num_attention_heads * attention_head_dim
74
+
75
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
76
+ self.proj_in = nn.Linear(in_channels, inner_dim)
77
+
78
+ self.transformer_blocks = nn.ModuleList(
79
+ [
80
+ TemporalTransformerBlock(
81
+ dim=inner_dim,
82
+ num_attention_heads=num_attention_heads,
83
+ attention_head_dim=attention_head_dim,
84
+ num_attention_blocks=num_attention_blocks,
85
+ temporal_max_len=temporal_max_len,
86
+ pos_embedding_type=pos_embedding_type,
87
+ )
88
+ for d in range(num_layers)
89
+ ]
90
+ )
91
+ self.proj_out = nn.Linear(inner_dim, in_channels)
92
+
93
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
94
+ assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
95
+ video_length = hidden_states.shape[2]
96
+ hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
97
+
98
+ batch, channel, height, width = hidden_states.shape
99
+ residual = hidden_states
100
+
101
+ hidden_states = self.norm(hidden_states)
102
+ inner_dim = hidden_states.shape[1]
103
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim).contiguous()
104
+ hidden_states = self.proj_in(hidden_states)
105
+
106
+ # Transformer Blocks
107
+ for block in self.transformer_blocks:
108
+ hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length, attention_mask=attention_mask)
109
+
110
+ # output
111
+ hidden_states = self.proj_out(hidden_states)
112
+ hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
113
+
114
+ output = hidden_states + residual
115
+ output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
116
+
117
+ return output
118
+
119
+
120
+ class TemporalTransformerBlock(nn.Module):
121
+ def __init__(
122
+ self,
123
+ dim,
124
+ num_attention_heads,
125
+ attention_head_dim,
126
+ num_attention_blocks = 2,
127
+ temporal_max_len = 32,
128
+ pos_embedding_type = "ape",
129
+ ):
130
+ super().__init__()
131
+
132
+ self.attention_blocks = nn.ModuleList(
133
+ [
134
+ TemporalAttention(
135
+ query_dim=dim,
136
+ heads=num_attention_heads,
137
+ dim_head=attention_head_dim,
138
+ temporal_max_len=temporal_max_len,
139
+ pos_embedding_type=pos_embedding_type,
140
+ )
141
+ for i in range(num_attention_blocks)
142
+ ]
143
+ )
144
+ self.norms = nn.ModuleList(
145
+ [
146
+ nn.LayerNorm(dim)
147
+ for i in range(num_attention_blocks)
148
+ ]
149
+ )
150
+
151
+ self.ff = FeedForward(dim, dropout=0.0, activation_fn="geglu")
152
+ self.ff_norm = nn.LayerNorm(dim)
153
+
154
+
155
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
156
+ for attention_block, norm in zip(self.attention_blocks, self.norms):
157
+ norm_hidden_states = norm(hidden_states)
158
+ hidden_states = attention_block(
159
+ norm_hidden_states,
160
+ encoder_hidden_states=encoder_hidden_states,
161
+ video_length=video_length,
162
+ attention_mask=attention_mask,
163
+ ) + hidden_states
164
+
165
+ hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
166
+
167
+ output = hidden_states
168
+ return output
169
+
170
+
171
+ class PositionalEncoding(nn.Module):
172
+ def __init__(
173
+ self,
174
+ d_model,
175
+ dropout = 0.,
176
+ max_len = 32
177
+ ):
178
+ super().__init__()
179
+ self.dropout = nn.Dropout(p=dropout)
180
+ position = torch.arange(max_len).unsqueeze(1)
181
+ div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
182
+ pe = torch.zeros(1, max_len, d_model)
183
+ pe[0, :, 0::2] = torch.sin(position * div_term)
184
+ pe[0, :, 1::2] = torch.cos(position * div_term)
185
+ self.register_buffer('pe', pe)
186
+
187
+ def forward(self, x):
188
+ x = x + self.pe[:, :x.size(1)].to(x.dtype)
189
+ return self.dropout(x)
190
+
191
+ class TemporalAttention(CrossAttention):
192
+ def __init__(
193
+ self,
194
+ temporal_max_len = 32,
195
+ pos_embedding_type = "ape",
196
+ *args, **kwargs
197
+ ):
198
+ super().__init__(*args, **kwargs)
199
+
200
+ self.pos_embedding_type = pos_embedding_type
201
+ self._use_memory_efficient_attention_xformers = True
202
+
203
+ self.pos_encoder = None
204
+ self.freqs_cis = None
205
+ if self.pos_embedding_type == "ape":
206
+ self.pos_encoder = PositionalEncoding(
207
+ kwargs["query_dim"],
208
+ dropout=0.,
209
+ max_len=temporal_max_len
210
+ )
211
+
212
+ elif self.pos_embedding_type == "rope":
213
+ self.freqs_cis = precompute_freqs_cis(
214
+ kwargs["query_dim"],
215
+ temporal_max_len
216
+ )
217
+
218
+ else:
219
+ raise NotImplementedError
220
+
221
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
222
+ d = hidden_states.shape[1]
223
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
224
+
225
+ if self.pos_encoder is not None:
226
+ hidden_states = self.pos_encoder(hidden_states)
227
+
228
+ encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states
229
+
230
+ if self.group_norm is not None:
231
+ hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
232
+
233
+ query = self.to_q(hidden_states)
234
+ dim = query.shape[-1]
235
+
236
+ if self.added_kv_proj_dim is not None:
237
+ raise NotImplementedError
238
+
239
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
240
+ key = self.to_k(encoder_hidden_states)
241
+ value = self.to_v(encoder_hidden_states)
242
+
243
+ if self.freqs_cis is not None:
244
+ seq_len = query.shape[1]
245
+ freqs_cis = self.freqs_cis[:seq_len].to(query.device)
246
+ query, key = apply_rotary_emb(query, key, freqs_cis)
247
+
248
+ if attention_mask is not None:
249
+ if attention_mask.shape[-1] != query.shape[1]:
250
+ target_length = query.shape[1]
251
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
252
+ attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
253
+
254
+
255
+ use_memory_efficient = self._use_memory_efficient_attention_xformers
256
+ if use_memory_efficient and (dim // self.heads) % 8 != 0:
257
+ # print('Warning: the dim {} cannot be divided by 8. Fall into normal attention'.format(dim // self.heads))
258
+ use_memory_efficient = False
259
+
260
+ # attention, what we cannot get enough of
261
+ if use_memory_efficient:
262
+ query = self.reshape_heads_to_4d(query)
263
+ key = self.reshape_heads_to_4d(key)
264
+ value = self.reshape_heads_to_4d(value)
265
+
266
+ hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
267
+ # Some versions of xformers return output in fp32, cast it back to the dtype of the input
268
+ hidden_states = hidden_states.to(query.dtype)
269
+ else:
270
+ query = self.reshape_heads_to_batch_dim(query)
271
+ key = self.reshape_heads_to_batch_dim(key)
272
+ value = self.reshape_heads_to_batch_dim(value)
273
+
274
+ if self._slice_size is None or query.shape[0] // self._slice_size == 1:
275
+ hidden_states = self._attention(query, key, value, attention_mask)
276
+ else:
277
+ raise NotImplementedError
278
+ # hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
279
+
280
+ # linear proj
281
+ hidden_states = self.to_out[0](hidden_states)
282
+
283
+ # dropout
284
+ hidden_states = self.to_out[1](hidden_states)
285
+
286
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
287
+
288
+ return hidden_states
video_depth_anything/util/blocks.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+
4
+ def _make_scratch(in_shape, out_shape, groups=1, expand=False):
5
+ scratch = nn.Module()
6
+
7
+ out_shape1 = out_shape
8
+ out_shape2 = out_shape
9
+ out_shape3 = out_shape
10
+ if len(in_shape) >= 4:
11
+ out_shape4 = out_shape
12
+
13
+ if expand:
14
+ out_shape1 = out_shape
15
+ out_shape2 = out_shape * 2
16
+ out_shape3 = out_shape * 4
17
+ if len(in_shape) >= 4:
18
+ out_shape4 = out_shape * 8
19
+
20
+ scratch.layer1_rn = nn.Conv2d(
21
+ in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
22
+ )
23
+ scratch.layer2_rn = nn.Conv2d(
24
+ in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
25
+ )
26
+ scratch.layer3_rn = nn.Conv2d(
27
+ in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
28
+ )
29
+ if len(in_shape) >= 4:
30
+ scratch.layer4_rn = nn.Conv2d(
31
+ in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
32
+ )
33
+
34
+ return scratch
35
+
36
+
37
+ class ResidualConvUnit(nn.Module):
38
+ """Residual convolution module."""
39
+
40
+ def __init__(self, features, activation, bn):
41
+ """Init.
42
+
43
+ Args:
44
+ features (int): number of features
45
+ """
46
+ super().__init__()
47
+
48
+ self.bn = bn
49
+
50
+ self.groups = 1
51
+
52
+ self.conv1 = nn.Conv2d(
53
+ features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
54
+ )
55
+
56
+ self.conv2 = nn.Conv2d(
57
+ features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
58
+ )
59
+
60
+ if self.bn is True:
61
+ self.bn1 = nn.BatchNorm2d(features)
62
+ self.bn2 = nn.BatchNorm2d(features)
63
+
64
+ self.activation = activation
65
+
66
+ self.skip_add = nn.quantized.FloatFunctional()
67
+
68
+ def forward(self, x):
69
+ """Forward pass.
70
+
71
+ Args:
72
+ x (tensor): input
73
+
74
+ Returns:
75
+ tensor: output
76
+ """
77
+
78
+ out = self.activation(x)
79
+ out = self.conv1(out)
80
+ if self.bn is True:
81
+ out = self.bn1(out)
82
+
83
+ out = self.activation(out)
84
+ out = self.conv2(out)
85
+ if self.bn is True:
86
+ out = self.bn2(out)
87
+
88
+ if self.groups > 1:
89
+ out = self.conv_merge(out)
90
+
91
+ return self.skip_add.add(out, x)
92
+
93
+
94
+ class FeatureFusionBlock(nn.Module):
95
+ """Feature fusion block."""
96
+
97
+ def __init__(
98
+ self,
99
+ features,
100
+ activation,
101
+ deconv=False,
102
+ bn=False,
103
+ expand=False,
104
+ align_corners=True,
105
+ size=None,
106
+ ):
107
+ """Init.
108
+
109
+ Args:
110
+ features (int): number of features
111
+ """
112
+ super().__init__()
113
+
114
+ self.deconv = deconv
115
+ self.align_corners = align_corners
116
+
117
+ self.groups = 1
118
+
119
+ self.expand = expand
120
+ out_features = features
121
+ if self.expand is True:
122
+ out_features = features // 2
123
+
124
+ self.out_conv = nn.Conv2d(
125
+ features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1
126
+ )
127
+
128
+ self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
129
+ self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
130
+
131
+ self.skip_add = nn.quantized.FloatFunctional()
132
+
133
+ self.size = size
134
+
135
+ def forward(self, *xs, size=None):
136
+ """Forward pass.
137
+
138
+ Returns:
139
+ tensor: output
140
+ """
141
+ output = xs[0]
142
+
143
+ if len(xs) == 2:
144
+ res = self.resConfUnit1(xs[1])
145
+ output = self.skip_add.add(output, res)
146
+
147
+ output = self.resConfUnit2(output)
148
+
149
+ if (size is None) and (self.size is None):
150
+ modifier = {"scale_factor": 2}
151
+ elif size is None:
152
+ modifier = {"size": self.size}
153
+ else:
154
+ modifier = {"size": size}
155
+
156
+ output = nn.functional.interpolate(
157
+ output.contiguous(), **modifier, mode="bilinear", align_corners=self.align_corners
158
+ )
159
+
160
+ output = self.out_conv(output)
161
+
162
+ return output
video_depth_anything/util/transform.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+
4
+
5
+ class Resize(object):
6
+ """Resize sample to given size (width, height).
7
+ """
8
+
9
+ def __init__(
10
+ self,
11
+ width,
12
+ height,
13
+ resize_target=True,
14
+ keep_aspect_ratio=False,
15
+ ensure_multiple_of=1,
16
+ resize_method="lower_bound",
17
+ image_interpolation_method=cv2.INTER_AREA,
18
+ ):
19
+ """Init.
20
+
21
+ Args:
22
+ width (int): desired output width
23
+ height (int): desired output height
24
+ resize_target (bool, optional):
25
+ True: Resize the full sample (image, mask, target).
26
+ False: Resize image only.
27
+ Defaults to True.
28
+ keep_aspect_ratio (bool, optional):
29
+ True: Keep the aspect ratio of the input sample.
30
+ Output sample might not have the given width and height, and
31
+ resize behaviour depends on the parameter 'resize_method'.
32
+ Defaults to False.
33
+ ensure_multiple_of (int, optional):
34
+ Output width and height is constrained to be multiple of this parameter.
35
+ Defaults to 1.
36
+ resize_method (str, optional):
37
+ "lower_bound": Output will be at least as large as the given size.
38
+ "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
39
+ "minimal": Scale as least as possible. (Output size might be smaller than given size.)
40
+ Defaults to "lower_bound".
41
+ """
42
+ self.__width = width
43
+ self.__height = height
44
+
45
+ self.__resize_target = resize_target
46
+ self.__keep_aspect_ratio = keep_aspect_ratio
47
+ self.__multiple_of = ensure_multiple_of
48
+ self.__resize_method = resize_method
49
+ self.__image_interpolation_method = image_interpolation_method
50
+
51
+ def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
52
+ y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
53
+
54
+ if max_val is not None and y > max_val:
55
+ y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
56
+
57
+ if y < min_val:
58
+ y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
59
+
60
+ return y
61
+
62
+ def get_size(self, width, height):
63
+ # determine new height and width
64
+ scale_height = self.__height / height
65
+ scale_width = self.__width / width
66
+
67
+ if self.__keep_aspect_ratio:
68
+ if self.__resize_method == "lower_bound":
69
+ # scale such that output size is lower bound
70
+ if scale_width > scale_height:
71
+ # fit width
72
+ scale_height = scale_width
73
+ else:
74
+ # fit height
75
+ scale_width = scale_height
76
+ elif self.__resize_method == "upper_bound":
77
+ # scale such that output size is upper bound
78
+ if scale_width < scale_height:
79
+ # fit width
80
+ scale_height = scale_width
81
+ else:
82
+ # fit height
83
+ scale_width = scale_height
84
+ elif self.__resize_method == "minimal":
85
+ # scale as least as possbile
86
+ if abs(1 - scale_width) < abs(1 - scale_height):
87
+ # fit width
88
+ scale_height = scale_width
89
+ else:
90
+ # fit height
91
+ scale_width = scale_height
92
+ else:
93
+ raise ValueError(f"resize_method {self.__resize_method} not implemented")
94
+
95
+ if self.__resize_method == "lower_bound":
96
+ new_height = self.constrain_to_multiple_of(scale_height * height, min_val=self.__height)
97
+ new_width = self.constrain_to_multiple_of(scale_width * width, min_val=self.__width)
98
+ elif self.__resize_method == "upper_bound":
99
+ new_height = self.constrain_to_multiple_of(scale_height * height, max_val=self.__height)
100
+ new_width = self.constrain_to_multiple_of(scale_width * width, max_val=self.__width)
101
+ elif self.__resize_method == "minimal":
102
+ new_height = self.constrain_to_multiple_of(scale_height * height)
103
+ new_width = self.constrain_to_multiple_of(scale_width * width)
104
+ else:
105
+ raise ValueError(f"resize_method {self.__resize_method} not implemented")
106
+
107
+ return (new_width, new_height)
108
+
109
+ def __call__(self, sample):
110
+ width, height = self.get_size(sample["image"].shape[1], sample["image"].shape[0])
111
+
112
+ # resize sample
113
+ sample["image"] = cv2.resize(sample["image"], (width, height), interpolation=self.__image_interpolation_method)
114
+
115
+ if self.__resize_target:
116
+ if "depth" in sample:
117
+ sample["depth"] = cv2.resize(sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST)
118
+
119
+ if "mask" in sample:
120
+ sample["mask"] = cv2.resize(sample["mask"].astype(np.float32), (width, height), interpolation=cv2.INTER_NEAREST)
121
+
122
+ return sample
123
+
124
+
125
+ class NormalizeImage(object):
126
+ """Normlize image by given mean and std.
127
+ """
128
+
129
+ def __init__(self, mean, std):
130
+ self.__mean = mean
131
+ self.__std = std
132
+
133
+ def __call__(self, sample):
134
+ sample["image"] = (sample["image"] - self.__mean) / self.__std
135
+
136
+ return sample
137
+
138
+
139
+ class PrepareForNet(object):
140
+ """Prepare sample for usage as network input.
141
+ """
142
+
143
+ def __init__(self):
144
+ pass
145
+
146
+ def __call__(self, sample):
147
+ image = np.transpose(sample["image"], (2, 0, 1))
148
+ sample["image"] = np.ascontiguousarray(image).astype(np.float32)
149
+
150
+ if "depth" in sample:
151
+ depth = sample["depth"].astype(np.float32)
152
+ sample["depth"] = np.ascontiguousarray(depth)
153
+
154
+ if "mask" in sample:
155
+ sample["mask"] = sample["mask"].astype(np.float32)
156
+ sample["mask"] = np.ascontiguousarray(sample["mask"])
157
+
158
+ return sample
video_depth_anything/video_depth.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (2025) Bytedance Ltd. and/or its affiliates
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ import torch.nn.functional as F
16
+ import torch.nn as nn
17
+ from torchvision.transforms import Compose
18
+ import cv2
19
+ from tqdm import tqdm
20
+ import numpy as np
21
+ import gc
22
+
23
+ from .dinov2 import DINOv2
24
+ from .dpt_temporal import DPTHeadTemporal
25
+ from .util.transform import Resize, NormalizeImage, PrepareForNet
26
+
27
+ from utils.util import compute_scale_and_shift, get_interpolate_frames
28
+
29
+ # infer settings, do not change
30
+ INFER_LEN = 32
31
+ OVERLAP = 10
32
+ KEYFRAMES = [0,12,24,25,26,27,28,29,30,31]
33
+ INTERP_LEN = 8
34
+
35
+ class VideoDepthAnything(nn.Module):
36
+ def __init__(
37
+ self,
38
+ encoder='vitl',
39
+ features=256,
40
+ out_channels=[256, 512, 1024, 1024],
41
+ use_bn=False,
42
+ use_clstoken=False,
43
+ num_frames=32,
44
+ pe='ape'
45
+ ):
46
+ super(VideoDepthAnything, self).__init__()
47
+
48
+ self.intermediate_layer_idx = {
49
+ 'vits': [2, 5, 8, 11],
50
+ 'vitl': [4, 11, 17, 23]
51
+ }
52
+
53
+ self.encoder = encoder
54
+ self.pretrained = DINOv2(model_name=encoder)
55
+
56
+ self.head = DPTHeadTemporal(self.pretrained.embed_dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken, num_frames=num_frames, pe=pe)
57
+
58
+ def forward(self, x):
59
+ B, T, C, H, W = x.shape
60
+ patch_h, patch_w = H // 14, W // 14
61
+ features = self.pretrained.get_intermediate_layers(x.flatten(0,1), self.intermediate_layer_idx[self.encoder], return_class_token=True)
62
+ depth = self.head(features, patch_h, patch_w, T)
63
+ depth = F.interpolate(depth, size=(H, W), mode="bilinear", align_corners=True)
64
+ depth = F.relu(depth)
65
+ return depth.squeeze(1).unflatten(0, (B, T)) # return shape [B, T, H, W]
66
+
67
+ def infer_video_depth(self, frames, target_fps, input_size=518, device='cuda'):
68
+ transform = Compose([
69
+ Resize(
70
+ width=input_size,
71
+ height=input_size,
72
+ resize_target=False,
73
+ keep_aspect_ratio=True,
74
+ ensure_multiple_of=14,
75
+ resize_method='lower_bound',
76
+ image_interpolation_method=cv2.INTER_CUBIC,
77
+ ),
78
+ NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
79
+ PrepareForNet(),
80
+ ])
81
+
82
+ frame_size = frames[0].shape[:2]
83
+ frame_list = [frames[i] for i in range(frames.shape[0])]
84
+ frame_step = INFER_LEN - OVERLAP
85
+ org_video_len = len(frame_list)
86
+ append_frame_len = (frame_step - (org_video_len % frame_step)) % frame_step + (INFER_LEN - frame_step)
87
+ frame_list = frame_list + [frame_list[-1].copy()] * append_frame_len
88
+
89
+ depth_list = []
90
+ pre_input = None
91
+ for frame_id in tqdm(range(0, org_video_len, frame_step)):
92
+ cur_list = []
93
+ for i in range(INFER_LEN):
94
+ cur_list.append(torch.from_numpy(transform({'image': frame_list[frame_id+i].astype(np.float32) / 255.0})['image']).unsqueeze(0).unsqueeze(0))
95
+ cur_input = torch.cat(cur_list, dim=1).to(device)
96
+ if pre_input is not None:
97
+ cur_input[:, :OVERLAP, ...] = pre_input[:, KEYFRAMES, ...]
98
+
99
+ with torch.no_grad():
100
+ depth = self.forward(cur_input) # depth shape: [1, T, H, W]
101
+
102
+ depth = F.interpolate(depth.flatten(0,1).unsqueeze(1), size=frame_size, mode='bilinear', align_corners=True)
103
+ depth_list += [depth[i][0].cpu().numpy() for i in range(depth.shape[0])]
104
+
105
+ pre_input = cur_input
106
+
107
+ del frame_list
108
+ gc.collect()
109
+
110
+ depth_list_aligned = []
111
+ ref_align = []
112
+ align_len = OVERLAP - INTERP_LEN
113
+ kf_align_list = KEYFRAMES[:align_len]
114
+
115
+ for frame_id in range(0, len(depth_list), INFER_LEN):
116
+ if len(depth_list_aligned) == 0:
117
+ depth_list_aligned += depth_list[:INFER_LEN]
118
+ for kf_id in kf_align_list:
119
+ ref_align.append(depth_list[frame_id+kf_id])
120
+ else:
121
+ curr_align = []
122
+ for i in range(len(kf_align_list)):
123
+ curr_align.append(depth_list[frame_id+i])
124
+ scale, shift = compute_scale_and_shift(np.concatenate(curr_align),
125
+ np.concatenate(ref_align),
126
+ np.concatenate(np.ones_like(ref_align)==1))
127
+
128
+ pre_depth_list = depth_list_aligned[-INTERP_LEN:]
129
+ post_depth_list = depth_list[frame_id+align_len:frame_id+OVERLAP]
130
+ for i in range(len(post_depth_list)):
131
+ post_depth_list[i] = post_depth_list[i] * scale + shift
132
+ post_depth_list[i][post_depth_list[i]<0] = 0
133
+ depth_list_aligned[-INTERP_LEN:] = get_interpolate_frames(pre_depth_list, post_depth_list)
134
+
135
+ for i in range(OVERLAP, INFER_LEN):
136
+ new_depth = depth_list[frame_id+i] * scale + shift
137
+ new_depth[new_depth<0] = 0
138
+ depth_list_aligned.append(new_depth)
139
+
140
+ ref_align = ref_align[:1]
141
+ for kf_id in kf_align_list[1:]:
142
+ new_depth = depth_list[frame_id+kf_id] * scale + shift
143
+ new_depth[new_depth<0] = 0
144
+ ref_align.append(new_depth)
145
+
146
+ depth_list = depth_list_aligned
147
+
148
+ return depth_list[:org_video_len], target_fps
149
+