# This file is originally from DepthCrafter/depthcrafter/utils.py at main ยท Tencent/DepthCrafter # SPDX-License-Identifier: MIT License license # # This file may have been modified by ByteDance Ltd. and/or its affiliates on [date of modification] # Original file is released under [ MIT License license], with the full license text available at [https://github.com/Tencent/DepthCrafter?tab=License-1-ov-file]. from typing import Union, List import tempfile import numpy as np import PIL.Image import matplotlib.cm as cm import mediapy import torch from decord import VideoReader, cpu def read_video_frames(video_path, process_length, target_fps=-1, max_res=-1, dataset="open"): vid = VideoReader(video_path, ctx=cpu(0)) original_height, original_width = vid.get_batch([0]).shape[1:3] height = original_height width = original_width if max_res > 0 and max(height, width) > max_res: scale = max_res / max(original_height, original_width) height = round(original_height * scale) width = round(original_width * scale) vid = VideoReader(video_path, ctx=cpu(0), width=width, height=height) fps = vid.get_avg_fps() if target_fps == -1 else target_fps stride = round(vid.get_avg_fps() / fps) stride = max(stride, 1) frames_idx = list(range(0, len(vid), stride)) if process_length != -1 and process_length < len(frames_idx): frames_idx = frames_idx[:process_length] frames = vid.get_batch(frames_idx).asnumpy() return frames, fps def save_video( video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 10, crf: int = 18, ) -> str: if output_video_path is None: output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name if isinstance(video_frames[0], np.ndarray): video_frames = [frame.astype(np.uint8) for frame in video_frames] elif isinstance(video_frames[0], PIL.Image.Image): video_frames = [np.array(frame) for frame in video_frames] mediapy.write_video(output_video_path, video_frames, fps=fps, crf=crf) return output_video_path class ColorMapper: # a color mapper to map depth values to a certain colormap def __init__(self, colormap: str = "inferno"): self.colormap = torch.tensor(cm.get_cmap(colormap).colors) def apply(self, image: torch.Tensor, v_min=None, v_max=None): # assert len(image.shape) == 2 if v_min is None: v_min = image.min() if v_max is None: v_max = image.max() image = (image - v_min) / (v_max - v_min) image = (image * 255).long() image = self.colormap[image] * 255 return image def vis_sequence_depth(depths: np.ndarray, v_min=None, v_max=None): visualizer = ColorMapper() if v_min is None: v_min = depths.min() if v_max is None: v_max = depths.max() res = visualizer.apply(torch.tensor(depths), v_min=v_min, v_max=v_max).numpy() return res