# This file is originally from AnimateDiff/animatediff/models/motion_module.py at main ยท guoyww/AnimateDiff # SPDX-License-Identifier: Apache-2.0 license # # This file may have been modified by ByteDance Ltd. and/or its affiliates on [date of modification] # Original file was released under [ Apache-2.0 license], with the full license text available at [https://github.com/guoyww/AnimateDiff?tab=Apache-2.0-1-ov-file#readme]. import torch import torch.nn.functional as F from torch import nn from .attention import CrossAttention, FeedForward, apply_rotary_emb, precompute_freqs_cis from einops import rearrange, repeat import math def zero_module(module): # Zero out the parameters of a module and return it. for p in module.parameters(): p.detach().zero_() return module class TemporalModule(nn.Module): def __init__( self, in_channels, num_attention_heads = 8, num_transformer_block = 2, num_attention_blocks = 2, norm_num_groups = 32, temporal_max_len = 32, zero_initialize = True, pos_embedding_type = "ape", ): super().__init__() self.temporal_transformer = TemporalTransformer3DModel( in_channels=in_channels, num_attention_heads=num_attention_heads, attention_head_dim=in_channels // num_attention_heads, num_layers=num_transformer_block, num_attention_blocks=num_attention_blocks, norm_num_groups=norm_num_groups, temporal_max_len=temporal_max_len, pos_embedding_type=pos_embedding_type, ) if zero_initialize: self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) def forward(self, input_tensor, encoder_hidden_states, attention_mask=None): hidden_states = input_tensor hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask) output = hidden_states return output class TemporalTransformer3DModel(nn.Module): def __init__( self, in_channels, num_attention_heads, attention_head_dim, num_layers, num_attention_blocks = 2, norm_num_groups = 32, temporal_max_len = 32, pos_embedding_type = "ape", ): super().__init__() inner_dim = num_attention_heads * attention_head_dim self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) self.proj_in = nn.Linear(in_channels, inner_dim) self.transformer_blocks = nn.ModuleList( [ TemporalTransformerBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, num_attention_blocks=num_attention_blocks, temporal_max_len=temporal_max_len, pos_embedding_type=pos_embedding_type, ) for d in range(num_layers) ] ) self.proj_out = nn.Linear(inner_dim, in_channels) def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") batch, channel, height, width = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim).contiguous() hidden_states = self.proj_in(hidden_states) # Transformer Blocks for block in self.transformer_blocks: hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length, attention_mask=attention_mask) # output hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) return output class TemporalTransformerBlock(nn.Module): def __init__( self, dim, num_attention_heads, attention_head_dim, num_attention_blocks = 2, temporal_max_len = 32, pos_embedding_type = "ape", ): super().__init__() self.attention_blocks = nn.ModuleList( [ TemporalAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, temporal_max_len=temporal_max_len, pos_embedding_type=pos_embedding_type, ) for i in range(num_attention_blocks) ] ) self.norms = nn.ModuleList( [ nn.LayerNorm(dim) for i in range(num_attention_blocks) ] ) self.ff = FeedForward(dim, dropout=0.0, activation_fn="geglu") self.ff_norm = nn.LayerNorm(dim) def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): for attention_block, norm in zip(self.attention_blocks, self.norms): norm_hidden_states = norm(hidden_states) hidden_states = attention_block( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length, attention_mask=attention_mask, ) + hidden_states hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states output = hidden_states return output class PositionalEncoding(nn.Module): def __init__( self, d_model, dropout = 0., max_len = 32 ): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe = torch.zeros(1, max_len, d_model) pe[0, :, 0::2] = torch.sin(position * div_term) pe[0, :, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.size(1)].to(x.dtype) return self.dropout(x) class TemporalAttention(CrossAttention): def __init__( self, temporal_max_len = 32, pos_embedding_type = "ape", *args, **kwargs ): super().__init__(*args, **kwargs) self.pos_embedding_type = pos_embedding_type self._use_memory_efficient_attention_xformers = True self.pos_encoder = None self.freqs_cis = None if self.pos_embedding_type == "ape": self.pos_encoder = PositionalEncoding( kwargs["query_dim"], dropout=0., max_len=temporal_max_len ) elif self.pos_embedding_type == "rope": self.freqs_cis = precompute_freqs_cis( kwargs["query_dim"], temporal_max_len ) else: raise NotImplementedError def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): d = hidden_states.shape[1] hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) if self.pos_encoder is not None: hidden_states = self.pos_encoder(hidden_states) encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = self.to_q(hidden_states) dim = query.shape[-1] if self.added_kv_proj_dim is not None: raise NotImplementedError encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = self.to_k(encoder_hidden_states) value = self.to_v(encoder_hidden_states) if self.freqs_cis is not None: seq_len = query.shape[1] freqs_cis = self.freqs_cis[:seq_len].to(query.device) query, key = apply_rotary_emb(query, key, freqs_cis) if attention_mask is not None: if attention_mask.shape[-1] != query.shape[1]: target_length = query.shape[1] attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) use_memory_efficient = self._use_memory_efficient_attention_xformers if use_memory_efficient and (dim // self.heads) % 8 != 0: # print('Warning: the dim {} cannot be divided by 8. Fall into normal attention'.format(dim // self.heads)) use_memory_efficient = False # attention, what we cannot get enough of if use_memory_efficient: query = self.reshape_heads_to_4d(query) key = self.reshape_heads_to_4d(key) value = self.reshape_heads_to_4d(value) hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) # Some versions of xformers return output in fp32, cast it back to the dtype of the input hidden_states = hidden_states.to(query.dtype) else: query = self.reshape_heads_to_batch_dim(query) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) if self._slice_size is None or query.shape[0] // self._slice_size == 1: hidden_states = self._attention(query, key, value, attention_mask) else: raise NotImplementedError # hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states